Measurement of the forward η meson production cross section in p-p collisions at \sqrt{s} =13 TeV with the LHCf Arm2 detector

¹INFN Section of Catania, Catania, Italy ²University of Catania, Catania, Italy ³CSFNSM, Catania, Italy

LHC-forward [1] (LHCf) is a **unique experiment** designed to measure neutral particle production in the pesudorapidity region $|\eta| > 8.4$. The aim of LHCf is to provide experimental data needful to tune and calibrate **hadronic interaction models** widely used by ground-based cosmic ray experiments. One of the characterizing parameters of the models is the **strange quark contribution**, that induces a large discrepancy on the expected η **production cross section**. A precise measure of this quantity allows to discriminate which of the analyzed models is more suitable to describe the interaction between primary cosmic rays and the earth's atmosphere.

ARM2 DETECTOR

- Located at about 140 m from LHC interaction point 1 (IP1).
- two calorimetric towers with 16 GSO scintillator layers [2], 22 tungsten plates and 4 XY silicon microstrip imaging layers [3], with a total length of about $44 X_0$ and $1.6 \lambda_I$.
- The **energy resolution** is better than 3% for photons and $30\div40\%$ for neutrons, while the **position resolution** for electromagnetic showers is about 40 μ m.

EVENT RECONSTRUCTION AND SELECTION

- The η meson identification is carried out by reconstructing position and energy of the two photons originated in the decay $\eta \to \gamma \gamma$ (B.R. 39.41%) and by selecting with several criteria.
- The **invariant mass distribution** is fitted with a model consisting of an asymmetric Gaussian for the signal and a 3^{rd} order Chebyshev polynomial function for the background.
- \triangleright The η mesons are selected in a window of 3σ from the peak, about 1500 candidates were found. Background was subtracted by using a sideband method.
- \blacktriangleright An **artificial shift of +2.65%** on single photon energies was applied to bring the η invariant mass peak into agreement with η rest mass.

Criteria for η event selection

Within 2 mm from the edge of calorimeter

Event type Energy threshold

Incident position

Invariant mass distribution

EXPERIMENTAL CORRECTIONS AND UNCERTAINTIES

- > The **Feynman-x** distribution $(x_F = 2p_z/\sqrt{s})$ of η mesons was corrected for several experimental effects:
 - a) η selection inefficency.
 - b) Geometrical acceptance.
 - c) Loss of events due to multihit cut.
 - d) Branching ratio inefficency.
- QGSJET model informations were used to calculate a) and c), while for b) the mean of the correction values obtained by QGSJET and EPOS were considered.
- The systematic uncertainties were estimated by using both the data sample (for energy scale, PID and beam-center stability errors) and the results of the QGSJET and EPOS model simulations (for acceptance, multihit and background subtraction errors).

Distributions of correction factors

Contributions to uncertainty

RESULTS AND COMPARISON WITH MODELS

 \succ The η experimental x_F spectrum was compared with several hadronic interaction models.

Ephoton>200 GeV

- None of the models is able to reproduce the experimental distribution in the whole x_F range.
- Among the models the one that seems to better reproduce the data is **QGSJETII-04.**
- Thanks to the detector read-out upgrade, the new data taking during LHC Run III, scheduled for September 2022, will allow to increase the statistics of the η mesons and to improve the precision of the measurement [4]. For more details see poster by K. Ohashi [5] (poster location A26).

Production cross section of η mesons

REFERENCES

- [1] O. Adriani et al., JINST 3 (2008) S08006.
- [2] Y. Makino, A. Tiberio et al., JINST 12 (2017) P03023.
- [3] O. Adriani et al., JINST 5 (2010) P01012.
- [4] LHCf collaboration (2019), "LHCf—Technical Proposal for the LHC Run 3".
- [5] K. Ohashi (2022/05), "Prospects of the LHCf operation in 2022", Poster, LHCP 2022, Taipei (TW), Online.