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Abstract

Development of a new framework for the derivation of order-by-order hydrodynamics from the Boltzmann equation is necessary as the widely used Anderson-Witting formalism leads to violation of fundamental conservation
laws when the relaxation-time depends on particle energy, or in a hydrodynamic frame other than the Landau frame. We generalize an existing framework for the consistent derivation of relativistic dissipative hydrodynamics
from the Boltzmann equation with an energy-dependent relaxation-time by extending the Anderson-Witting relaxation-time approximation. We argue that the present framework is compatible with conservation laws and
derives first-order hydrodynamic equations in the landau frame. Further, we show that the transport coefficients, such as shear and bulk viscosity as well as charge and heat diffusion currents, have corrections due to the
energy dependence of relaxation-time compared to what one obtains from the Anderson-Witting approximation of the collision term. The ratio of these transport coefficients are studied using a parametrized relaxation
time, and several interesting scaling features are reported.

Motivation

Boltzmann Equation
pµ∂µf=C[f ]= (p·u)

τR
δf=Collision kernel

Here τR(p) = (T/p) ∗ χ(p)

Fig. 2: K Dusling,D. Moore,D.Teany,PHYSICAL REVIEW C 81, 034907 (2010)

Description of Frames

•uµ is defined in hydro LRF and uµ∗ is defined in thermodynamic LRF
with uµu

µ = 1 and u∗µu
µ∗ = 1.

•u∗µ ≡ uµ + δuµ T ∗ ≡ T + δT µ∗ ≡ µ+ δµ f∗eq ≡ feq + δf∗

•Boltzmann transport equation with Extended RTA is given by
pµ∂µf= −(u·p)

τR(x,p)
(f−f∗eq(u

∗
µ, T

∗, µ∗)) , f∗eq =(e−β
∗(u∗·p)−α∗±a)−1

a=0,1,-1 for MB,FD,BE

• τR(x, p) = τeq(x)τp(p) where τp = (u·p
T

)`

•A order-by-order gradient expansion is followed here.

•We will consider dissipative function(δf) in hydrodynamics up to 1st
order.

•f = feq + δf(1)→f − f∗eq =feq+δf−f∗eq =feq+δf(1)−feq−δf∗=δf(1)− δf∗

Aim

•Normally RTA is taken
to be momentum inde-
pendent i.e τR(x).

•Our aim is to consider
momentum dependent
AW RTA i.e τR(x, p)
where

τp = (
u · p
T

)`

Constraints

•Two conservation laws must be obeyed
for a dissipative fluid system.

•Energy-momentum conservation
(∂µT

µν=0)and Particle current conser-
vation (∂µN

µ=0) respectively.

•First moment of Boltzmann equation
must vanish to satisfy the energy- mo-
mentum tensor conservation.∫

dPpµpν∂µf = 0

Results for mass less and charge less case
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Issue

•By using momentum dependent
AW RTA(Extended RTA) in
Boltzmann equation,it will lead
to the violation of energy mo-
mentum conservation.

•uµuνδT µν =
∫

dPpµpνδf (1) 6= 0

•Choice of landau frame for hy-
dro need not correspond to the
thermal equilibrium system

Approach

•Nonzero quantity of energy con-
servation can be compensated
by the difference in by defining
2 different frames.

•The differences will be calcu-
lated using landau frame and
matching condition.

uµT
µν=ε0u

ν, uµuνT
µν=ε0 , uµN

µ=n0

Phys. Rev. C 89, 014901 (2014), arXiv:1304.3753 [nucl-th]

Results for massive and charge less case
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What’s special?

•An Approach by changing the form of AW RTA is already available to
deal ERTA,where,conservation equations are satisfied by compromising
the simple form of RTA.Phys. Rev. Lett. 127,042301 (2021), arXiv:2103.07489 [nucl-th].

• In our case we kept RTA as usual, but compromise by satisfying the
conservation equation order by order in gradient expansion.
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Fig. 3: Flow chart to Introduce different frames

Results for mass less and charged case
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ΛMB =


5

(4+`)(3+`)
for α→ 0 ,

5(`2−`+4)
16 (4+`)(3+`)

for α→∞ .

ΛFD =


196π2(21+`−1) ζ(2+`)

45 (23+`−1)(4+`)(3+`)ζ(4+`)
α→0

5
3

α→∞

Summary and Conclusion

•A successful and well defined frame is developed to consider momentum dependent RTA. Ratios of the transport coefficient up to first order are studied.

•New and interesting features of transport coefficients for different statistics are revealed. arXiv:2112.14581v2[nucl-th]7Feb2022

•So many other questions are still needed to address (e.g other functional form of momentum dependent τR, ζ
η

behaviour for −`, study in other frame of

reference etc).


