May 16 – 20, 2022
Europe/Zurich timezone

Fluid properties of hadron gas produced in relativistic collisions of pp and AA

May 17, 2022, 7:00 PM
Theory poster Heavy Ions Poster Session I


Ronald Scaria


The applicability of hydrodynamics to study the space-time evolution of hadronic matter produced in relativistic heavy-ion collisions is one of the outstanding issues. The hadronic matter may be produced initially in the hadronic phase or may appear after a quark-gluon plasma phase produced initially revert to hadronic matter through a phase transition. The Knudsen number ($Kn$) can be used as an indicator of the degree of thermalization in the system. In this study, we obtain the variation of $Kn$ to study the degree of thermalization in an excluded volume hadron resonance gas model. $Kn$ along with other parameters like Reynolds number ($Re$) and Mach number ($Ma$) give insights into the nature of the flow in the system. The dependence of these dimensionless parameters on system size and baryonic chemical potential ($\mu_B$) are studied. The obtained values of the parameters ($Kn << 1$, $Ma ∼ 1$ and $Re >> 1$) indicate the occurrence of compressible inviscid flows at high temperatures close to the QCD phase transition region ($T ∼150−170$ MeV). The degree of thermalization of hadron gas estimated is comparable over different system sizes, indicating the applicability of hydrodynamics in interpreting the results from high multiplicity pp to heavy-ion collisions.

Reference: R. Scaria, D. Sahu, C. R. Singh, R. Sahoo and J. Alam, [arXiv:2201.08096 [hep-ph]].

Primary authors

Ronald Scaria Dushmanta Sahu (Indian Institute of Technology Indore (IN)) Captain Rituraj Singh Raghunath Sahoo (Indian Institute of Technology Indore (IN)) Prof. Jan-e Alam (Variable Energy Cyclotron Centre)

Presentation materials