Search for electroweak production of supersymmetric sleptons and charginos with the ATLAS detector 10th Edition of the Large Hadron Collider Physics Conference (LHCP 2022)

Eric Ballabene (eric.ballabene@cern.ch)

on behalf of the ATLAS Collaboration

University and INFN, Milano (IT)

Introduction

New search [1] targeting supersymmetric models with 2 leptons, low hadronic activity and large E_{T}^{miss} :

Charginos pair production p χ_1^{\pm} W χ_1^{0} χ_1^{0} χ_1^{0} χ_1^{0} ν ℓ

Challenging signatures due to low production cross section of supersymmetric signal and very similar kinematics to WW Standard Model (SM) background

• Dedicated search strategy for each considered model.

Regions with large slepton and chargino mass already excluded by previous searches [2]:

• Challenging gaps remain uncovered in the exclusion contours.

• New search focusing on phase space regions with slepton-neutralino and chargino-neutralino mass differences of the order of *W* boson mass.

Slepton analysis		Chargino analysis
Search strategy		Search strategy
 Data-driven background estimate Flavour Symmetric Background (FSB) composition of Same Flavour (SF) events (<i>ee</i>/μμ) in the Signal Region (SR) by looking to Different Flavour (DF) events (<i>e</i>μ) in data and reweighting them by detector efficiencies. Cut-and-count approach for the SR 		 Semi data-driven background estimate Main backgrounds (VV and top) normalized in Control Regions (CRs).
		• Machine learning techniques • Training of BDTs combining signal samples with $\Delta m(\tilde{\chi}_1^{\pm}, \tilde{\chi}_1^0) = 90$ or 100 GeV. • Multiclass classification with 4 BDT outputs
$\begin{array}{c} 40 \\ 35 \\ 30 \\ 25 \\ 20 \\ 15 \end{array} + \begin{array}{c} ATLAS \ Preliminary \\ \sqrt{s}=13 \ TeV, \ 139 \ fb^{-1} \\ 25 \\ 20 \\ 15 \end{array} + \begin{array}{c} Data \\ FSB \\ Others \\ SR-0J \\ 0 \end{array} + \begin{array}{c} \\ FSB \\ Others \\ SR-1J \\ 0 \end{array} + \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	 SR with both 0-jet and 1-jet channels. Shape fit in m^{100[1]} bins to 	• Inditicial associal association with 4 BDT outputs.

Results

References

[1] ATLAS Collaboration, "Search for direct pair production of sleptons and charginos decaying to two leptons and neutralinos with mass splittings near the W boson mass in 13 TeV pp collisions with the ATLAS detector", <u>ATLAS-CONF-2022-006</u>.

[2] ATLAS Collaboration, "Search for electroweak production of charginos and sleptons decaying into final states with two leptons and missing transverse momentum in \sqrt{s} = 13 TeV pp collisions using the ATLAS detector", arXiV:1908.08215.

and DF channels. Only 0-jet channels considered.

• Shape-fit in *BDTsignal* bins.

 No significant deviations from the SM observed in SR bins.

Results

Exclusion limits at 95% CL set on the chargino pair production model:

• New results supersede the ATLAS 8 TeV results and extend the previous ATLAS 13 TeV results.

• Exclusion in particularly interesting regions where the charginos could have hidden behind the looking-alike WW background.

Conclusions

New search [1] targeting the slepton and chargino pair productions using *pp* collisions collected by the ATLAS detector during Run 2 (2015-2018).

- Dedicated and improved analysis strategies adopted for each search.
- Unprecedented sensitivity reached for both searches.

The SM has survived our new ATLAS searches. However challenging "gaps" in the exclusion contours still remain uncovered.

- Larger datasets, improved data analysis techniques or even dedicated new searches will pave the way to explore these gaps.
- Run 3 is due to start this year stay tuned to future discoveries!