

Richard Hawkings

OPAL 10-year reunion, 21/10/2010

- A challenge OPAL physics in 20'
 - 430 papers = 2.8 sec/paper
- Instead focus on some personallyselected 'highlights':
 - 'The twelve highlights of OPAL' a pre-Christmas carol
 - Hopefully triggers some memories
 - Certainly not complete
 - Will not mention zedometry or Higgs – covered elsewhere
- Music ... b J 🎝 🎝

One to begin - particle production

- Basic properties in had. Z decay
 - Charged particle production using the jet chamber dE/dx
 - Pions, kaons and protons fragmentation fns vs MC prediction
- More exotic states
 - Sigma baryons: $\Sigma^+ \rightarrow p\pi^0$; $\Sigma^- \rightarrow n\pi^-$; $\Sigma^0 \rightarrow \Lambda \gamma$ all different modes!
 - Latter with converted photons
- Charm and bottom mesons
 - $D^{*+} \rightarrow D^0 \Box^+; D^0 \rightarrow K^- \Box^+$
 - Separate b, c and g→cc contributions using lifetime, event shape and lepton information
- Important for tuning MC models
- 2-particle correlations: BEC & more
 - With many species of particle 21st October 2010

QCD measurements - two related experiments

- Decay of $Z \rightarrow qq$ is a QCD laboratory
 - Very clean initial state, production of different flavours (some taggable)
 - Measurements of α_s with jet rates, even $t_{R}^{M_n}$ shape observables, etc
 - Here thrust, jet mass & broadening
 - Measurements of colour factors
 - Repeated for flavour tagged samples, and at various LEP2 energies
 - Interplay between improved theoretical and experimental techniques ...
- Reanalysis of JADE data with OPAL
 - Cover E_{CM}-range of 35-189 GeV
 - Take advantage of theoretical developments since JADE
 - And some computer archaeology
 - α_s from jet fractions and differential dists

21st October 2010

Richard Hawkings

- Studies of quark vs. gluon jets
 - Use events with 3 widely-separated jets, 2 are b-tagged (hence q-tag)
 - Opposite hemisphere is a clean gluon jet – effectively a point source
 - Compare properties with uds jets
 - QCD predictions for particle multiplicity ratio of ~2 (from C_A/C_F)
- Also sensitive to colour recon (AR3)
- Studies extended to look for rapidity gaps in gluon jets
 - Signature of colour reconnection
 - Also look at charge of leading part of gluon jet – expect 0-charge excess
 - Disfavour some colour recon models, and search for glueballs
 - Production favoured in gluon-rich environment?

Tau physics (four = 1 + 3 prongs)

5000

4000

3000

2000

1000 20

10

-0.04

-0.02

0.02

no. entries

- LEP1 produced O(100k) $Z \rightarrow \tau^+ \tau^-$
 - Rich τ -physics program 2 examples
- τ -lifetime measured to ~0.7%
 - 1-prong decay: impact parameter
 - 3-prong decay: secondary vertex
 - Reconstruction of beamspot crucial
 - τ -lifetime and $\tau \rightarrow e$ BR together allow test of lepton universality wrt μ
 - d₀ (cm) τ -decays also allow setting a limit on τ -neutrino mass
 - Look for decays into 3 or 5 charged hadrons (π)
 - Study energy and invariant mass of $n\pi$ system
 - Also technique based on missing mass
 - Combined limit of $m_{\gamma\tau}$ <27.6 MeV @ 95% CL
 - Unfortunately ALEPH got a lucky event (18 MeV)
 - Also many measurements of tau branching ratios, and studies of QCD in hadronic tau decays

The fifth flavour - measurement of R_h

 $(1/N_{had})dN/d(L/\sigma_{L})$

10

- Tagging b-decays with leptons and displaced vertices – R_b $R_{\rm b} \equiv \frac{\Gamma({\rm Z}^0 \to {\rm b}\overline{\rm b})}{\Gamma({\rm Z}^0 \to {\rm hadrons})}$
- Initial results higher than SM
 - EPS-95 Brussels the 'flying pig'
 - R_b=0.2219±0.0017 c.f. 0.2155 SM
 - Some interplay between R_b and R_c
- A long road to resolve this 'R_b-crisis'
 - Improved tagging: 3D vertex, alignment, NN tag
 - Understanding of tag correlations (ALEPH pvtx)
 - Multitag measurements with charm
 - Measurement of $g \rightarrow bb$
 - Systematics and more systematics...
- Finally, Rb=0.2163±0.0007 from LEP combined

21st October 2010

Five alive – an inconvenient asymmetric legacy

Richard Hawkings

Many fives - Inclusive b-hadrons

Vertexing techniques also allows inclusive B-hadron reconstruction

- Separate charged and neutral bhadrons using charge of sec vtx
- Precise measurement of B⁺/B⁰ lifetimes and CP-violation tests

Study of pions produced with B

- Charge correlations between B and pions from fragmentation
 - Basis of B0/B0bar tagging method later used at hadron colliders for oscillations/CP
- Evidence for resonant Bπ and BK production
 - First observation of orbitally excited B** mesons

Enter the sixth flavour: **B-oscillations and CP violation**

100

OPAL

14

OPAL

 $12 \Gamma \Delta m_d$ from D*Iv

Many measurements of B⁰ oscillations

- $B^0 \rightarrow D^* I_V, D^{*+} \rightarrow D^0 \pi^+, D^0 \rightarrow K^- \pi^+$
- Higher statistics from inclusive slow π
 - B⁰ production flavour from opposite side lepton, jet charge, vertex charge,...
- Inclusive single and dilepton analyses also sensitive to Δm_s
 - Heroic efforts to push limits to $\Delta m_s > 5 \text{ ps}^{-1}$
 - Time resolution not enough mesaurement had to wait for Tevatron
- Same machinery cheekily recycled ...
 - First investigation of CP-violation in decay $B^0 \rightarrow J/\psi K_s$
 - Sample of 24 candidates, 60% pure
 - Result of $sin 2\beta = 3.2 \pm 2.0$
 - Later confirmed by CDF, ALEPH and b-factories (~0.7) – the sign was right!

R _{0.8} 0.2 $M(K^{\pi^+})$ (GeV) t (ps) 0.8 opposite sign raction 0.7 + OPAL data 0.6 — fit prediction 0.5 paine 10.5 paine 1 0.5 0.3 0.2 Δm_d from D " slow π 0.1 -2 10 12 0 reconstructed proper time (ps) MeV/c 12 _(c) orrected asymmetry + OPAL data 6 **OPAL** data fit 10 $\boxtimes B^0 \rightarrow J/\psi K$ sin2β fit 2 B⁰→J/ψK^{*} □ background 2 3 5.5 6.5 reconstructed proper time (ps) **Richard Hawkings** Invariant mass (GeV/c²)

D⁰ recon

Interlude - The OPAL duck-pond

I cannot find a way to link 'seven' with two-photon physics...

Seventh heaven? 2-photon physics at LEP1 & 2

2-fermions at LEP2 – eight new observables

√s / GeV

2-fermions - eight all agree

WW and the W mass – nine years of effort

- WW physics central @ LEP2
 - First opportunity to study W in clean environment of e⁺e⁻ collider
 - O(10k) WW events reconstructed in IvIv, qqIv and qqqq final states
 - Measurement of WW production crosssection and W branching ratios
- Measurement of W-boson mass
 - Natural complement to LEP1 m_z
 - Many challenges to reach 0.06%
 - Detector response (calib Zs)
 - Hadronisation and precision electroweak effects
 - LEP energy calibration
 - Colour reconnection and BEC in 4q 1
 - Also a measurement in lvlv!

21st October 2010

Richard Hawkings

Ten triple gauge couplings $(g_1^{Z}, \kappa_Z, \kappa_\gamma, \lambda_Z, \lambda_\gamma, g_5^{Z}; f_4^{ZZZ}, f_4^{ZZ\gamma}, f_5^{ZZZ}, f_5^{ZZ\gamma})$

Searching for SUSY – eleven null results

- LEP2 searches found nothing!
 - But a big industry along the way
 keen expectation at each new
 energy from LEP1.5 @ 130 GeV
- Searches for SUSY via chargino or neutralino pair production
 - Final states with jets, or jets and leptons – tricks to fight WW b/g
- And for R-parity-violating SUSY
 - Search for scalar fermions e.g. pair-produced stops giving 2I+2j
 - Smuon and stau giving 4j+2l
- And many more …
 - Leptoquarks, radions, exotic
 Higgs, excited leptons, γγ states
 - Model-independent searches
 - Invisible objects ...
 21st October 2010

Searching with CJ – twelve wires in overflow

Jet chamber dE/dx allows searches for anomalously-behaving particles

- Long-lived heavy charged particles produce 'wrong' dE/dx vs p/Q
- Pair production of spin-0 and ½ particles – limits on smuons and staus in CMSSM
- Also set limits on fractionallycharged particles

Magnetic monopoles more difficult

- Very-heavily ionizing saturation of FADC readout
 - Special monopole trigger looking for high dE/dx on groups of 12 wires
- Parabolic trajectory not reconstructed by standard software
 - Look for isolated heavy ionisation
- Monopole limits from 45-102 GeV

- Fantastic breadth and depth of physics results from OPAL at LEP1 and 2
 - High-statistics Z decays at LEP1 precision QCD, tau and heavy flavour physics
 - Physics at the energy frontier with LEP2 searches, 2f and gauge boson physics
 - Not forgetting zedometry and Higgs searches ...
 - A triumph for the Standard Model it did not crack
- Some of these results have/will be overtaken (Tevatron, B-factories, LHC)
 - But form a 'reference point' for later experiments
 - Invaluable data for refining our understanding and models
- Some will be with us 'forever', or until repeated at a linear collider Z-factory
- OPAL was a 'small' experiment and a great opportunity
 - With 400+ papers, plenty of physics topics to study, write PhD theses, etc.
 - Excellent opportunities for young people to learn, to take positions of responsibility
 - And a great working environment (nearly) always fun …
 - Can we replicate this 'spirit' in the mega-experiments of today?

