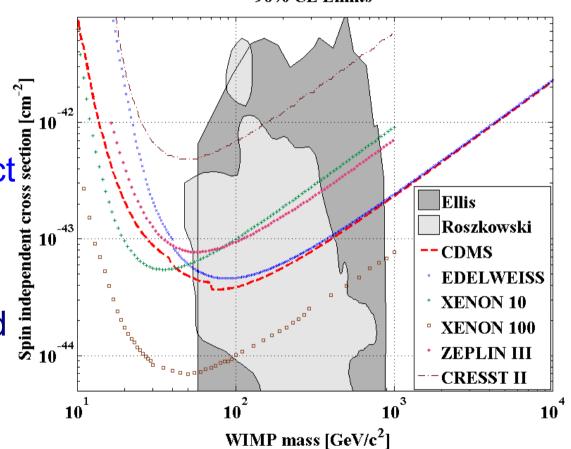
Combining Results from Dark Matter Searches: CDMS and EDELWEISS

P. Di Stefano, Queen's U, Canada distefan@queensu.ca for the CDMS and EDELWEISS collaborations

CDMS-EDW, PRD 84 (2011) 011102(R), arXiv:1105.3377 see also S. Yellin, arXiv:1105.2928

The Dark Matter Mystery

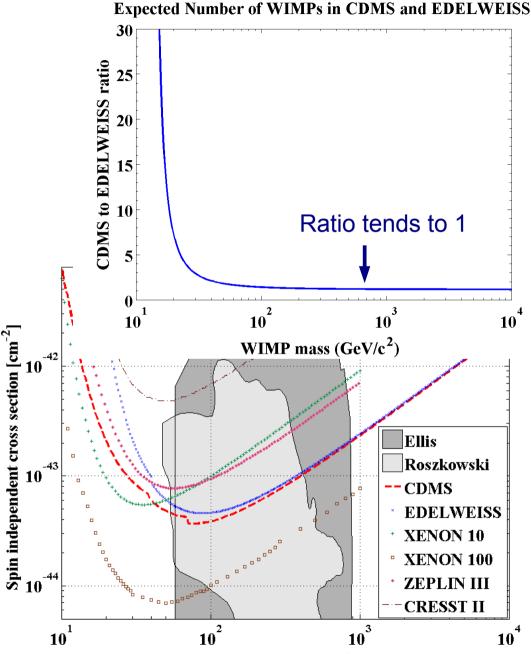

(Zwicky, 1933)

- Most of the matter in the Universe only visible via gravitational interactions
- Particle physics may provide a solution: Weakly Interacting Massive Particles (WIMPs)
- Many experiments trying to detect WIMPs directly, using many different techniques and targets:
 - XENON, LUX: Xe
 - DEAP: Ar
 - PICASSO: F
 - COGENT: Ge

- Subkelvin Ge ionisation-phonon detectors have provided competitive limits on WIMPs over the past decade
- Two experiments use this technique: CDMS and EDELWEISS
- Combine their results to see what can be learned about
 - WIMPs
 - Backgrounds
- Formal agreement
 - Authorship, procedures ...
 - Combination method
 - Make data public (arXiv)

The CDMS Experiment (Science 327, 1619, 2010)

- Located at Soudan MN (2100 mwe)
- Up to 19 Ge ionisationphonon detectors, 230 g each
- Athermal phonons to reject surface events
- Total:
 - Max exposure 379 kg.d
 - Threshold 5 keV
 - Blind analysis
 - 4 candidate events
 - 2 expected from bckgd

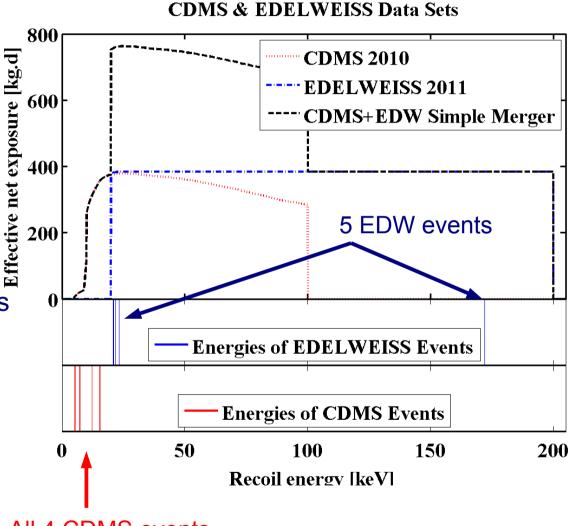


90% CL Limits

The EDELWEISS Experiment

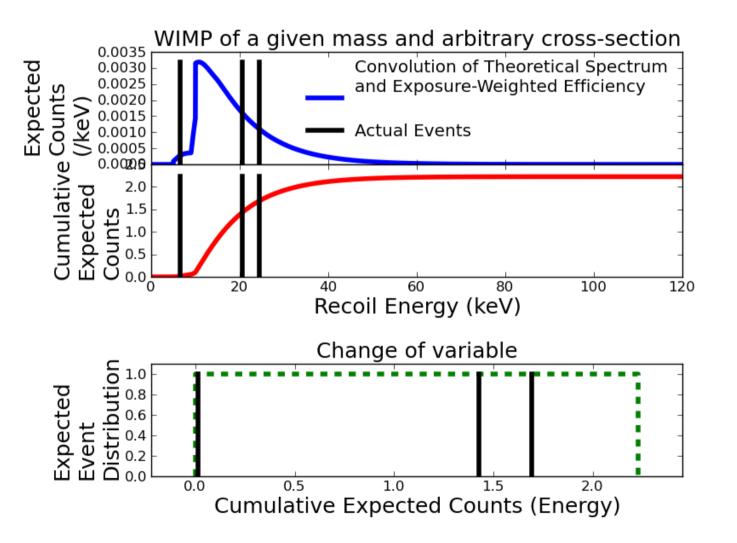
(arXiv:1103.4070, submitted PLB)

- Located in Modane Underground Lab, France (4800 mwe)
- 10x400 g Ge ionisationphonon detectors
- Patterned electrodes to identify surface events
- Total:
 - Max exposure 384 kg.d
 - Threshold 20 keV
 - Purblind analysis
 - 5 candidate events
 - Known backgrounds contribute <= 3 events

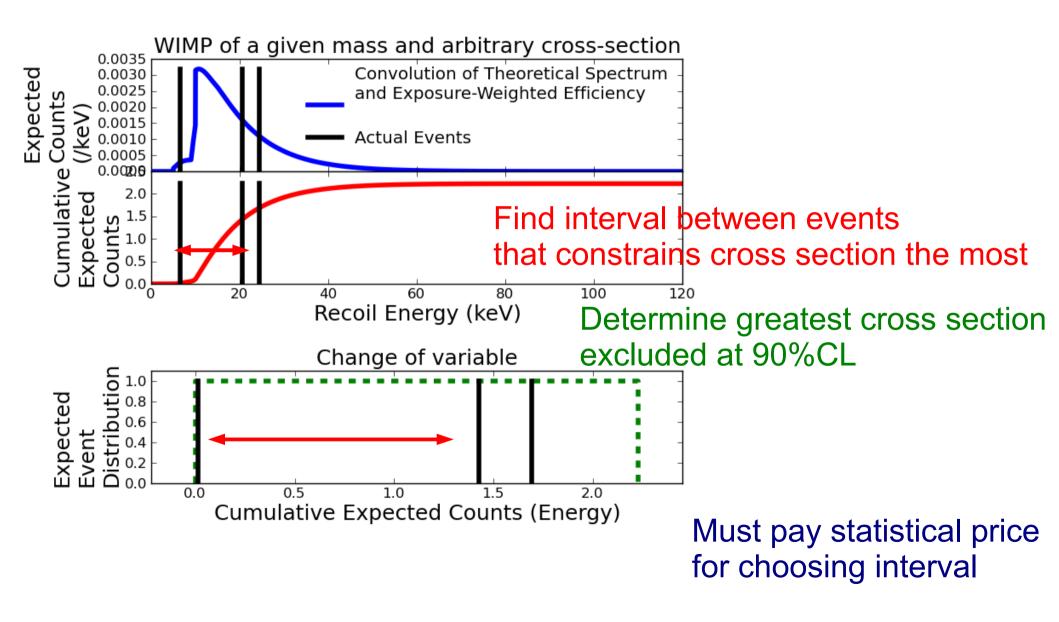


Similar physics, systematics to CDMS WIMP mass [GeV/c²]

Simple Merger (S. Yellin, arXiv:1105:2928)

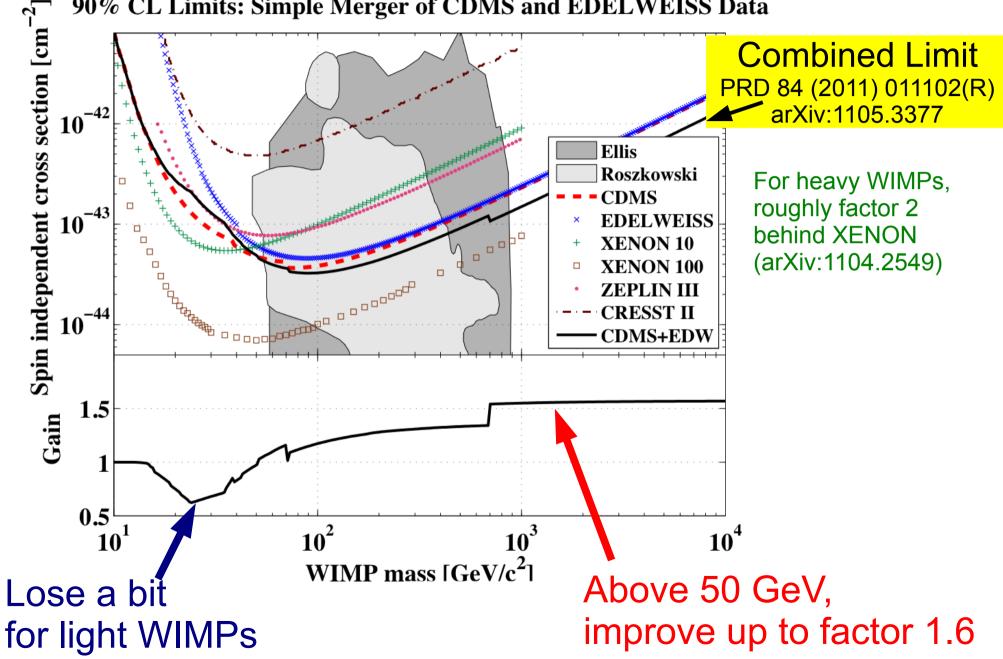

- Agreed upon before data were exchanged between experiments
- Official result of collaboration
- Method:
 - Sum exposure-weighted efficiencies
 - Combine events, regardless
 of experiment of origin
 - Apply standard "optimum interval" limit procedure (S. Yellin, PRD 66 032005 2002)
- What most experiments already do with their individual detectors, runs ...

• Data:

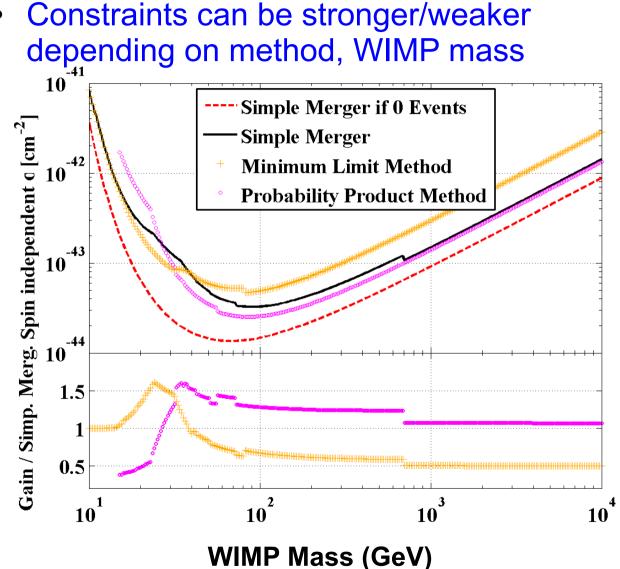


All 4 CDMS events below EDW thresh

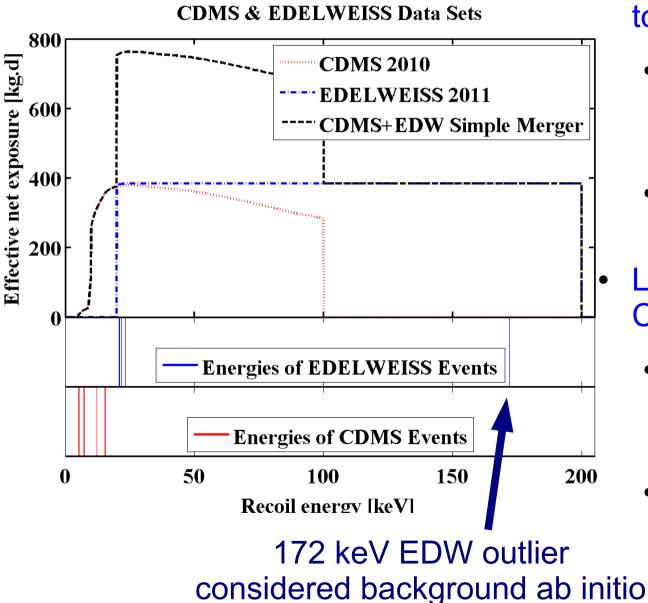
Optimum Interval/Simple Merger (S. Yellin PRD 66, 032005, 2002)



Optimum Interval/Simple Merger (S. Yellin PRD 66, 032005, 2002)

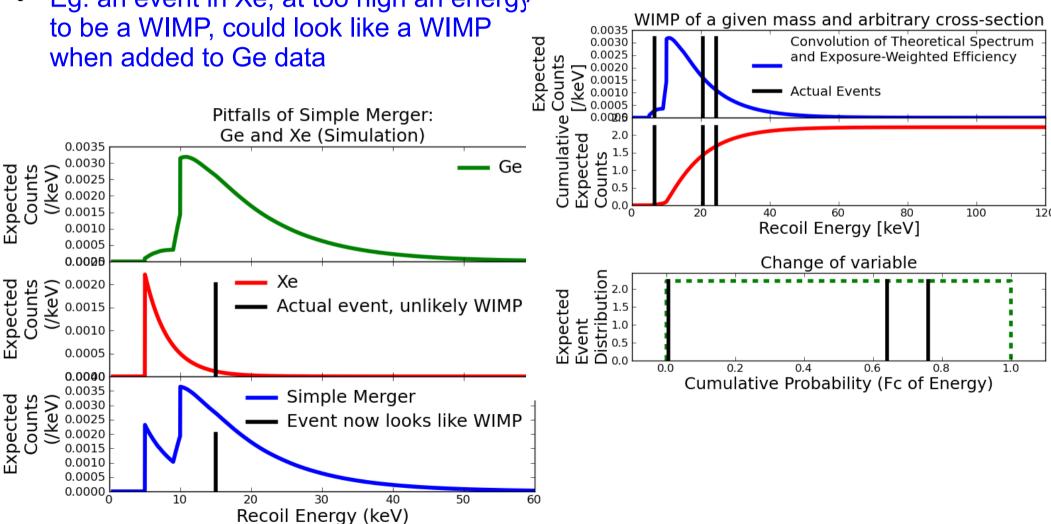

CDMS-EDW Combined Limits: Main Result

90% CL Limits: Simple Merger of CDMS and EDELWEISS Data


Alternative Methods (S. Yellin arXiv:1105.2928)

- Other methods that exploit the provenance of events are possible
- E.g. different ways to combine the probabilities of the optimum interval method applied to individual experiments
 - "Minimum Limit": Choose most constraining expt, but pay statistical penalty – appropriate for background limited cases
 - "Probability Product": appropriate for low background cases

• Method should be chosen based on what is known of backgrounds a priori

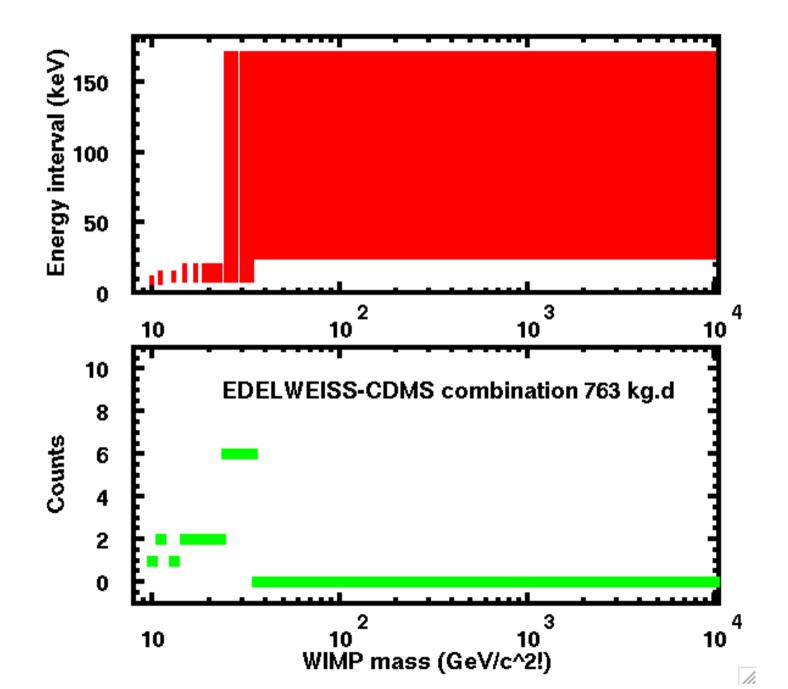

Insight into Backgrounds

- Independent likelihood test to CDMS, EDW separately:
 - WIMP mass most likely to cause events is <= 17 GeV in both cases,
 - but cross sections (rates) very different
- Likelihood ratio test of CDMS, EDW, CDMS+EDW:
 - No background hypothesis rejected at > 99.8%CL
 - Robust to variations in halo model

Merging Experiments with Different Targets (S. Yellin arXiv:1105.2928)

- Methods that combine probabilities can be used as is
- Simple merger may have drawbacks
- Eg: an event in Xe, at too high an energy to be a WIMP, could look like a WIMP when added to Ge data
- Alternative: merge cumulative probabilities

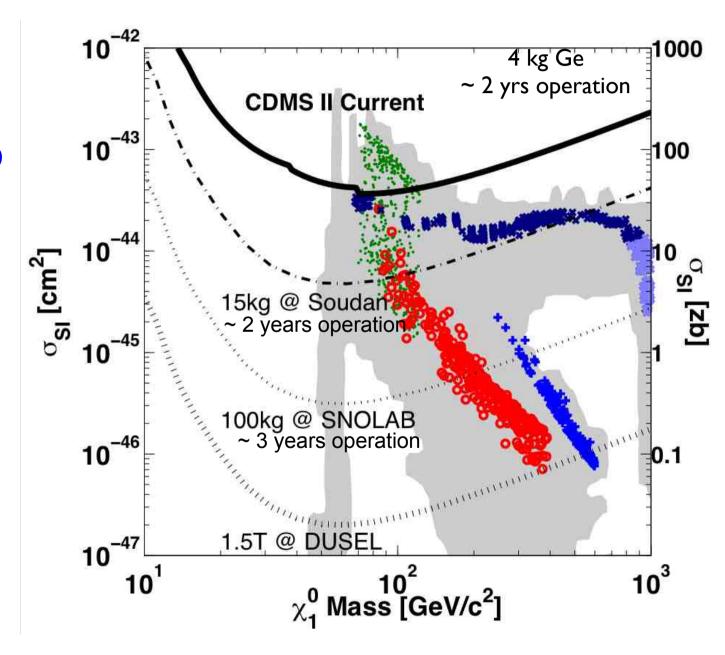
"If you can't beat'em, join'em"


- CDMS and EDELWEISS collaborations have produced a common analysis of their results
- The method was agreed upon before data were exchanged
- The main result improves constraints from subkelvin Ge detectors on WIMPs heavier than 50 GeV
- Data available on arXiv:1105.3377
- Other methods possible, should be chosen based on what is known about backgrounds a priori, can provide stronger constraints
- Can also be applied to other experiments, targets

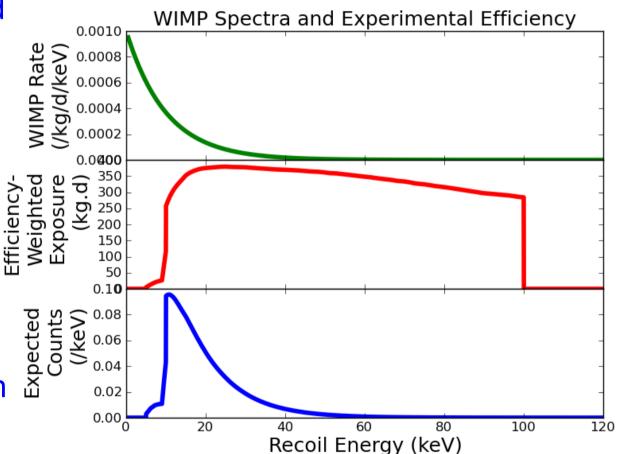
Towards LHC-size author lists ? Combined Limits on WIMPs from the CDMS and EDELWEISS Experiments

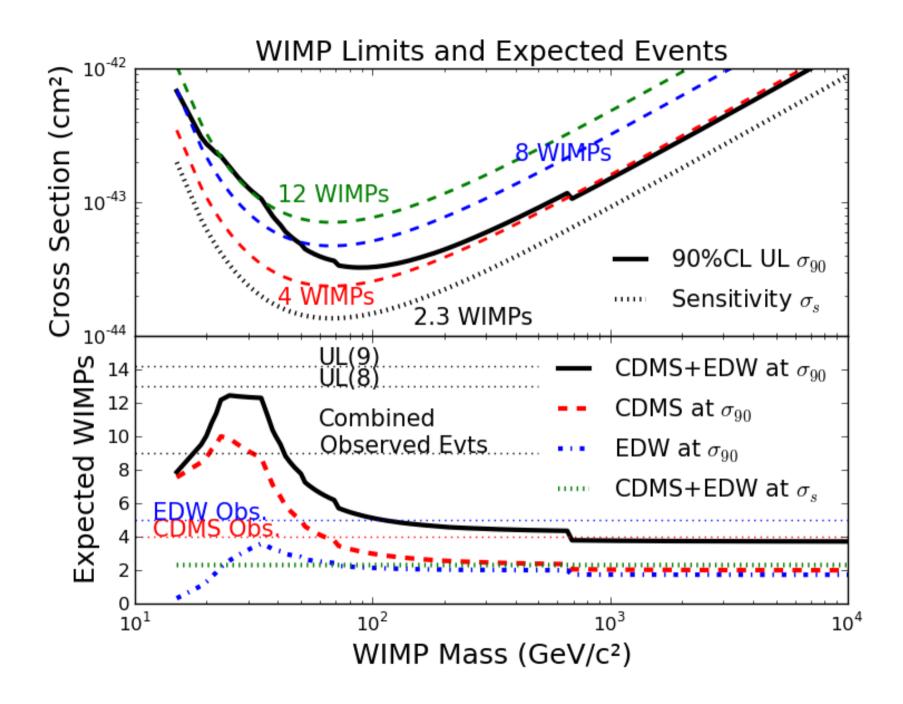
Z. Ahmed,¹ D. S. Akerib,² E. Armengaud,⁷ S. Arrenberg,³⁰ C. Augier,⁵ C. N. Bailev,² D. Balakishiveva,²⁸ L. Baudis,³⁰ D. A. Bauer,⁴ A. Benoît,¹⁴ L. Bergé,³ J. Blümer,^{8,9} P. L. Brink,¹⁸ A. Broniatowski,³ T. Bruch,³⁰ V. Brudanin,¹⁰ R. Bunker,²⁶ B. Cabrera,²² D. O. Caldwell,²⁶ B. Censier,⁵ M. Chapellier,³ G. Chardin,³ F. Charlieux,⁵ J. Coolev,²¹ P. Coulter,¹⁵ G. A. Cox,⁸ P. Cushman,²⁹ M. Daal,²⁵ X. Defav,³ M. De Jesus,⁵ F. DeJongh,⁴ P. C. F. Di Stefano,^{16,*} Y. Dolgorouki,³ J. Domange,^{3,7} L. Dumoulin,³ M. R. Dragowsky,² K. Eitel,⁹ S. Fallows,²⁹ E. Figueroa-Feliciano,¹³ J. Filippini,¹ D. Filosofov,¹⁰ N. Fourches,⁷ J. Fox,¹⁶ M. Fritts,²⁹ J. Gascon,⁵ G. Gerbier,⁷ J. Gironnet,⁵ S. R. Golwala,¹ M. Gros,⁷ J. Hall,⁴ R. Hennings-Yeomans,² S. Henry,¹⁵ S. A. Hertel,¹³ S. Hervé,⁷ D. Holmgren,⁴ L. Hsu,⁴ M. E. Huber,²⁷ A. Juillard,⁵ O. Kamaev,¹⁶ M. Kiveni,²³ H. Kluck,⁹ M. Kos,²³ V. Kozlov,⁹ H. Kraus,¹⁵ V. A. Kudrvavtsev,¹⁷ S. W. Leman,¹³ S. Liu,¹⁶ P. Loaiza,¹¹ R. Mahapatra,²⁴ V. Mandic,²⁹ S. Marnieros,³ C. Martinez,¹⁶ K. A. McCarthy,¹³ N. Mirabolfathi,²⁵ D. Moore,¹ P. Nadeau,¹⁶ X-F. Navick,⁷ H. Nelson,²⁶ C. Nones,⁷ R. W. Ogburn,²² E. Olivieri,³ P. Pari,⁶ L. Pattavina,⁵ B. Paul,⁷ A. Phipps,²⁵ M. Pyle,²² X. Qiu,²⁹ W. Rau,¹⁶ A. Reisetter,^{29,19} Y. Ricci,¹⁶ M. Robinson,¹⁷ S. Rozov,¹⁰ T. Saab.²⁸ B. Sadoulet,^{12,25} J. Sander,²⁶ V. Sanglard,⁵ B. Schmidt,⁸ R. W. Schnee,²³ S. Scorza,^{21,5} D. N. Seitz,²⁵ S. Semikh,¹⁰ B. Serfass,²⁵ K. M. Sundqvist,²⁵ M. Tarka,³⁰ A. S. Torrento-Coello,⁷ L. Vagneron,⁵ M.-A. Verdier,^{16,5} R. J. Walker,⁷ P. Wikus,¹³ E. Yakushev,¹⁰ S. Yellin,^{22,26} J. Yoo,⁴ B. A. Young,²⁰ and J. Zhang²⁹ (The CDMS and EDELWEISS Collaborations)

> ¹Division of Physics, Mathematics & Astronomy, California Institute of Technology, Pasadena, CA 91125, USA ²Department of Physics, Case Western Reserve University, Cleveland, OH 44106, USA ³CSNSM, Université Paris-Sud, IN2P3-CNRS, bat 108, 91405 Orsay, France ⁴Fermi National Accelerator Laboratory, Batavia, IL 60510, USA ⁵IPNL, Université de Luon, Université Luon 1, CNRS/IN2P3, 4 rue E, Fermi 69622 Villeurbanne cedex, France ³CEA, Centre d'Etudes Saclay, IRAMIS, 91191 Gif-Sur-Yvette Cedex, France ⁷CEA, Centre d'Etudes Saclay, IRFU, 91191 Gif-Sur-Yvette Cedex, France ⁸Karlsruhe Institute of Technology, Institut für Experimentelle Kernphysik, Gaedestr. 1, 76128 Karlsruhe, Germany ⁹Karlsruhe Institute of Technology, Institut für Kernphysik, Postfach 3640, 76021 Karlsruhe, Germany ¹⁰Laboratory of Nuclear Problems, JINR, Joliot-Curie 6, 141980 Dubna, Moscow region, Russia ¹¹Laboratoire Souterrain de Modane, CEA-CNRS, 1125 route de Bardonnèche, 73500 Modane, France ¹²Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA ¹³Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA ¹⁴CNRS-Néel, 25 Avenue des Martyrs, 38042 Grenoble cedex 9, France ¹⁵ University of Oxford, Department of Physics, Keble Road, Oxford OX1 3RH, UK ¹⁶Department of Physics, Queen's University, Kingston, ON, Canada, K7L 3N6 ¹⁷Department of Physics and Astronomy, University of Sheffield, Hounsfield Road, Sheffield S3 7RH, UK ¹⁸SLAC National Accelerator Laboratory/KIPAC, Menlo Park, CA 94025, USA ¹⁹Department of Physics, St. Olaf College, Northfield, MN 55057 USA ²⁰Department of Physics, Santa Clara University, Santa Clara, CA 95053, USA ²¹Department of Physics, Southern Methodist University, Dallas, TX 75275, USA ²Department of Physics, Stanford University, Stanford, CA 94305, USA ²³Department of Physics, Syracuse University, Syracuse, NY 13244, USA ²⁴Department of Physics, Texas A & M University, College Station, TX 77843, USA ²⁵Department of Physics, University of California, Berkeley, CA 94720, USA ²⁶Department of Physics, University of California, Santa Barbara, CA 93106, USA ²⁷ Departments of Phys. & Elec. Engr., University of Colorado Denver, Denver, CO 80217, USA ²⁸Department of Physics, University of Florida, Gainesville, FL 32611, USA ²⁹School of Physics & Astronomy, University of Minnesota, Minneapolis, MN 55455, USA ³⁰Physics Institute, University of Zürich, Winterthurerstr. 190, CH-8057, Switzerland

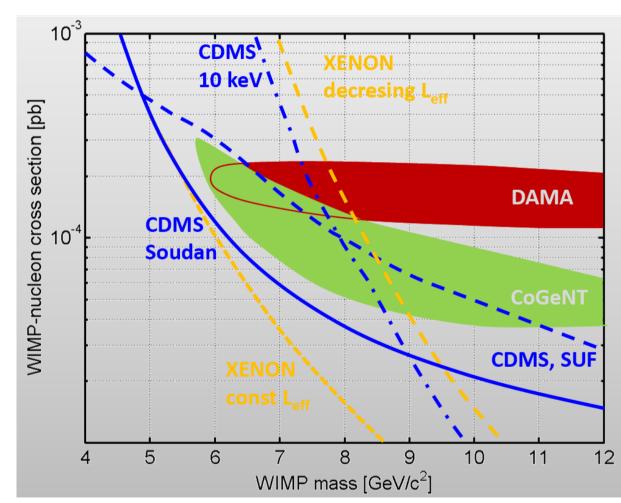

Optimum Interval

From CDMS to SuperCDMS


SuperCDMS:


- Improved
 detectors (also
 use charge to ID
 surface evts)
- Larger, deeper experiment at SNOLAB (then DUSEL ?)

Optimum Interval/Simple Merger (S. Yellin PRD 66, 032005, 2002)


- For a given WIMP mass, convolve experimental and theoretical data:
- Switch variable from energy to cumulative probability (uniformly distributed)
- Find interval between events with most information
- Find greatest cross section excluded at 90% CL
- Pay statistical price for choice of interval

CDMS and Light WIMPs

- CDMS and light WIMPs (PRL 106 (2011) 131302, PRD 82 (2010) 122004)
- Tension between results of (CDMS, XENON) and (COGENT, DAMA)

