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WWhat astro signals might
come from dark matter?

*PAMELA positrons

Fermi ete-
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HESS Systematic E'rror Band (8% energy shift)
---%--1 HESS Data (8% energy shift)
| ——+— Fermi High Energy Data
| =--+--' Fermi Low Energy Data
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e AMS-02 may confirm

*No way to tell if they come from DM or
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Weidenspointner et al. (2008) Integral signal (top) and LMXBs (bottom)
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Weidenspointner (2006)
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Fig. 2. A fit of the SPI result for the diffuse emission from the GC re-
gion (|/|,|b| < 16°) obtained with a spatial model consisting of an 8°
FWHM Gaussian bulge and a CO disk. In the fit a diagonal response
was assumed. The spectral components are: 511 keV line (dotted),
Ps continuum (dashes), and power-law continuum (dash-dots). The
summed models are indicated by the solid line. Details of the fitting
procedure are given in the text.
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Interesting, but could be anything.
(LMXB’s? | don'’t think so, but...)
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WMAP “haze”

Might have been DM annihilation signal.
Instead appears to be associated with giant
gamma-ray bubbles.
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Fermi 1.6 yr full-sky maps, point sources removed.

Fermi 1 < E« 2 GaV Fermnmi 2 < E < & Gay

H".'-

(Dark is brightest)
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Data minus Fermi diffuse emission model:
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Fermi1 <E <5 GeV
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Su et al.
(2010)
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Fermi1<E <5 GeV

Su et al.
(2010)
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Fermi1<E <5 GeV

¢ = 7 South bubble

—

Su et al.
(2010)
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Fermi bubbles:

Gamma-ray emissions

- Xray emissions

- 50,000 lightyears
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Fermi bubbles:

Gamma-ray emissions

- X-ray emissions

MikyWay e 8
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Big, sharp, and blue

Bubbles show energetic spectrum and sharp edges
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Brightness

e £ - - - Distance from bubble center
Credit: NASA/DOE/Fermi LAT/D. Finkbeiner et al.
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Fermi 0.5 - 1.0 GeV IC template _Uniform
bl > 30° P SFD dust - - - -

Whole bubble
0.5-1.0 GeV Fermi - SFD dust — — —
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Southern map

SFD subtracted

SFD and simple disk subtracted
SFD template

Simple disk template

Degrees from edge




Hosat Band 5

Hosat Band & + Band 7
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What does it all mean?

We think there was a “black hole accretion event”

about |-2 million years ago at the center of
the Milky VVay.

Such events can eject high-energy particles and
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Follow-up work:

* |00 ksec of XMM time to observe bubble edge
e Additional Fermi data / new event selection

*Wait for Planck
*|nvestigate rotation measures across bubble edge

AalAane ad e . et
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file://localhost/Users/dfink/Documents/CfA10.key
file://localhost/Users/dfink/Documents/CfA10.key

The Fermi bubbles are a great example of
“messy astrophysics.”

Given how complex astrophysics is, can we

ever hope to get a robust constraint on DM
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Motivation for looking at the CMB

*The CMB, together with LSS and SNe la, provides
persuasive evidence of the existence of dark matter.

* This evidence comes from things like H(z), da, and the
growth of structure. This can tell us about CDM/HDM,
but little about the particle nature of the DM.

e |[f the DM is a WIMP and if the WIMP annihilates
appreciably, than there is more to be learned from the
CMB!
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The CMB originates at the time of “last scattering,”

when the Universe first becomes transparent.
(z~ 1100 t~ 380,000 yr)

*WIMP annihilation (or decay) can inject high-energy
particles and photons into the gas at z ~ 100-1000.

* This energy modifies the “recombination” history of

the Universe (really, ionization fraction as a function of
time).

*The CMB power spectrum is sensitive to this change in
the ionization history.
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By measuring the CMB we can:

e Search for departures from the “standard
recombination’ scenario,

* Place limits on energy injection at z=100-1000,
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Note that these results are quite robust -- we
understand recombination and the CMB quite well,

and the measurements are good and rapidly
improving!

There is less “wiggle room” in CMB constraints at

z=100-1000 than constraints based on e.g.

'.:1 .lf" o B
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Selected key papers:

2004: Chen & Kamionkowski - calculated effect of DM decay on
recombination history. (to explain high tau in WMAP [)

2005: Padmanabhan & Finkbeiner - repeated calculation for WIMP
annihilation, obtained limits from WMAP.

2009: Galli, locco, Bertone, & Melchiorri - computed limits from
WMAP 5 on Sommerfeld-enhanced DM.

2009: Slatyer, Padmanabhan, & Finkbeiner - careful calculation of
deposition efficiency of WIMP annihilation energy as a function of
z, f(z). Computed actual limits for 42 benchmark WIMP masses /
annihilation channels.
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Recent papers:

201 I: Hutsi, Chluba, Hektor, & Raidal - Focus on light DM case,
generate f(z) curve appropriate for light WIMPs, use WMAP 7.

201 I: Galli, locco, Bertone, & Melchiorri - derive latest limits from
WMAP 7 and ACT, use f(z) from Slatyer et al.

Lo ficap.
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Annihilation produces photons, electrons, neutrinos

X + X — products m

v+ H—e +HT

Ve ==Y
v+ Ao A+e +et

e +H — 2 4+ HT
2e — 2e

Padmanabhan & Finkbeiner (2005)
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Annihilation produces photons, electrons, neutrinos

X + X — products
electron, photon a

cascade involving
several processes

jonization

= +
ytH—oe +H Compton

ATE =S re pair production
y+A—-A+e +e

27 — 27y

PrE ~—RY+e e +H—2 +H"
inverse Compton
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Padmanabhan & Finkbeiner (2005)
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lonization fraction (xe) and gas temperature change...
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...and this changes the visibility function ...

( = the distribution function of the last scattering
redshift of CMB photons)

\
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1+2z

Padmanabhan & Finkbeiner (2005)
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...and increased scattering at z ~ 600 modifies the
power spectrum.
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Constraints in f/ M

plane. (for thermal
relic Xsec)

f is a “fudge factor”
parameterizing
energy deposition
efficiency.

f=1is“on the spot”
approximation
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Cosmology

Pann — f(Z) <UU>/mDM

N

Dark matter model
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But what value does f have?

f depends on WIMP mass, annihilation
channels, etc.

If all energy is immediately deposited

in the gas, f =1.
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PAMELA positrons (Adriani+ 2010):
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Figure 11: The positron fraction R obtained using a beta-fit with statistical and systematic
errors summed in quadrature (red), compared with the positron fraction reported in [2]
(black). The solid line shows a calculation by Moskalenko & Strong [40] for pure secondary
production of positrons during the propagation of cosmic-rays in the galaxy.
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Also built into f is any enhancement
to the annihilation cross section.

For example, Sommerfeld-enhanced
models motivated by the PAMELA

positron spectrum can have f >> |.
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Accurate calculations of f for benchmark models:
The “SPF factor” paper...

CMB Constraints on WIMP Annihilation: Energy Absorption During the
Recombination Epoch

Tracy R. Slatver.)** Nikhil Padmanabhan,® 7 and Douglas P. Finkbeiner!:®:3

' Physics Department, Harvard University, Cambridge, MA 02138, USA
*Physics Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, CA 94720, USA
“Harvard-Smithsonian Center for Astrophysics, 60 Garden Sf., Cambridge, MA 02155, USA

We compute in detail the rate at which energy injected by dark matter annihilation heats and 1on-
izes the photon-baryon plasma at z ~ 1000, and provide accurate fitting functions over the relevant
redshift range for a broad array of annihilation channels and DM masses. The resulting pertur-
bations to the ionization history can be constrained by measurements of the CMB temperature
and polarization angular power spectra. We show that models which fit recently measured excesses
in 10-1000 GeV electron and positron cosmic rays are already close to the 85% confidence limits
from WMAP. The recently launched Planck satellite will be capable of ruling cut a wide range of
DM explanations for these exeesses. In models of dark matter with Sommerfeld-enhanced annihi-
lation, where (ow) rises with decreasing WIMP velocity until some saturation point, the WMAPS
constraints imply that the enhancement must be close to saturation in the neighborhood of the
Earth.
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Energy transfer from electrons to photons is efficient.

(i.e. essentially instantaneous)
We are mainly concerned with the fate of high energy photons.

There is a z-dependent transparency window:

1000.00
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Note difference to P&F (2005) and Chen & Kamionkowski (2004)
Slatyer+ (2009)
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Annihilation photons not yet thermalized

XDM electrons M = 1000 GeV
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The Slatyer-Padmanabhan-Finkbeiner (SPF) factor, f :

Elecirons 1 CEY -cenrenzreane

100 Ce
00 Gay -
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Slatyer+ (2009)
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The Slatyer-Padmanabhan-Finkbeiner (SPF) factor.

b 200 GeV

1000 GeV

Higgs 200 GeV

1000 GeV

Light quarks 200 CeV
1000 Gev

W 200 GeV

1000 GeV

£ 200 CeV

1000 Gev

100
redshift (1+z)

Slatyer+ (2009)
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The Slatyer-Padmanabhan-Finkbeiner (SPF) factor.

¥OM electrongs 10 Gaw
100 Gay =—r=m=
150 GeY coiminim

1000 GaVf

¥EM muonz 10 CaV
100 Gay s=-—a=—
£00 GeV o
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2500 CaV o———
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100 1000

redshift (1+z)

Here,  XDM?” just
means annihilates
through a new
light state, which
then decays.

Slatyer+ (2009)
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Benchmark models that fit PAMELA and/or Fermi

T rrrm

2.1 1500 Geyg‘BF = 1100

“““ 3 XDM p"-2500 GeV, BF = 1000
4 XDM-ee” 1000 GeV, BF = 300
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7 uw 1500 GeV, BF = 560

8 XDM 1:1:2 1500 GeV, BF = 400
9 XDM u'uw 400 GeV, BF = 110
10 u'p 250 GeV, BF = 81

11 W'W 200 GeV, BF = 66

12 XDM e'e” 150 GeV, BF = 16
13e’e 100 GeV, BF = 10

100 1000
DM Mass [GeV]

From SPE modeled on Galli+ (2009)
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Note that the PAMELA - constrained models fall along
the edge of the ruled-out region.

They all have ~ the same injection power. The CMB is
approximately sensitive to injection power.

>> There must be a more general way to do this!
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Recent work with Galli, Lin, & Slatyer (2011)

ldea: The energy injection is already constrained to be
small, so we can linearize the problem and perturb
about a fiducial model, i.e. the standard cosmology with
no extra energy injection.

Various energy injection functions, f(z), perturb the C
spectrum in a small dimension subspace, allowing us to
describe arbitrary (smooth, non-negative) energy
injection with only a few numbers.

We can work out degeneracies, detectability, etc., by
considering a few generic parameters.
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What basis to use in Delta C, space!?
Or equivalently, f(z) space!?

We can consider the effect of a delta function energy
injection at some redshift. This maps to a vector in AC,
space.

Now find Principle Components, map back to f(z) space.
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However -- we care about detectability, not variance.

Given the expected uncertainties (both cosmic variance
and measurement noise), how detectable are each of
these components?

Also -- what about degeneracies with cosmological
parameter variations! (especially n;)

To illustrate this problem, we take a toy (constant f)
model, and project out the directions in AC; space

corresponding to the cosmological parameters.
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It is not correct to simply project in AC, space.

We must marginalize over the cosmological parameters
(“nuisance parameters!”) taking account of the

uncertalnty at each |. Domg th|s we find a basis for
~ perturbations in AC| correspon to injection histc

Wednesday, July 20, 2011
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Detectability:

The most optimistic assumption is that WMAPS barely
missed detecting this signal at 2 sigma.

So assume f(z) = constant at the maximum annihilation

N
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2 S Res SRS N 5'«

Wednesday, July 20, 2011



Prospects for Planck: (annihilation) DF, Galli, Lin, & Slatyer (201 1)

model-independent, generic
generic fiducial
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Bottom line:

e Planck may detect one PC at high confidence,
worth trying first 3. Let’s call these €, &, €s...

e CV - limited mission could go for ~ 5.

e These parameters are simple to measure. Just
take dot product (including covariance matrix) of
measured AC, with AC, principle components; this

measures &|, &, &3.

* Predict €|, €, €3 for your favorite DM model.
Compare.
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This works for decay also

- Assume appropriate redshift dependence
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Prospects for Planck: (decay) DF, Galli, Lin, & Slatyer (201 1)
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Markov chain Monte Carlo (MCMCQ)

The Fisher matrix analysis assumes linearity and
Gaussian likelihood. These are good approximations, but

a we can compute the likelihood numerically with a
~Markov chain.
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Markov chain Monte Carlo (MCMCQ)

We can also use MCMC to compute the bias in the
cosmological parameters caused by neglect of energy

Injection.

We find the Fisher matrix-based estimates were good to
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Sommerfeld Conclusions:

e For WIMP models that can explain PAMELA,
the Sommerfeld enhancement must be (nearly)
saturated in the Milky Way today. (i.e. -- it is
almost already ruled out)

e Planck will measure this much better, and has a

good chance of seeing a signal if PAMELA e*
originate from DM annihilation.
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More general Conclusions:

e A general energy injection at z ~ [00-1000 can
be parameterized in a general way, yielding only |
(or maybe 3 or 5) parameters to measure, after
accounting for degeneracies with cosmological
parameters.

* Neglect of these parameters (assuming €, €2, €3
= 0) will bias the cosmological parameter fits --
often by > | sigma.

e |[f you want to know ns, you should make sure
to marginalize over €, &, €3..
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