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Outline

Collider constraints on ADM-SM 
coupling
Tevatron, LEP; LHC

ADM accumulation in stars
the Sun; neutron stars

Elliptical DM halo shape constraints on 
ADM self-interactions 



ADM Relic Density
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Couple to Quarks/Gluons

Goodman, Ibe, Rajarama, Shepherd, Tait, HBY (2010); Bai, Fox, Harnik (2010)
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Constraints from Tevatron
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FIG. 9: Same as Fig. 8, but for the operators D5 and D6 which are largely degenerate with D7 and

D8, respectively.
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FIG. 10: Same as Fig. 8, but for the operators D9 and D10.
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LHC (expected)

Tevatron

ADM relic density

 Only a few operators are allowed.
 For light ADM, the tension is stringent.
 P-wave cross section can avoid CMB constraints, but 

not colliders!

Goodman, Ibe, Rajarama, Shepherd, Tait, HBY (2010)



Couple to Leptons

Missing energy+mono-photon

Fox, Harnik, Kopp, Tsai (2011)
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FIG. 1: Relation between the mass of DM and the new physics scale. The relic abundance is

required be to in the 2σ region around the observed central value. The blue band is the LO result.

The red band is the NLO result. In this figure, we choose κ = 1,αs = 0.118 and Nf = 5.

FIG. 2: LO Feynman Diagrams.

are shown in Fig.2.

Because the DM does not interact with SM particles except for the quark fields in the

operator (1), their contributions to the cross section can be factorized as

|MDM |2 = 2
(

s34 − 4m2
)

. (14)

where sij = (pi + pj)2. Therefore, the born matrix element can be written as

MB =
−2M3t15 +M1 (−t15 − t25) + 2M2t25

t15t25
MDM , (15)
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LEP Constraints

Tevatron and LEP set strong constraints on ADM-
SM coupling. 

LHC will tell us more.

LEP

Deplete the symmetric component 

LEP

Fox, Harnik, Kopp, Tsai (2011)



ADM Accumulation
Typically, there are no annihilation signals. Look 
for ADM accumulation.

Accumulation in the Sun. 

Frandsen, Sarkar (2010); Cumberbatch, Guzik, Silk, Watson, West 
(2010); Taoso, Iocco, Meynet, Bertone, Eggenberger (2010)

Accumulation in neutron stars.

Goodman, Nussinov (1989); McDermott, HBY, Zurek (2011); Kouvaris, 
Tinyakov (2011); Lavallaz, Fairbairn (2010); 



ADM in the Sun

Taoso, Iocco, Meynet, Bertone, Eggenberger (2010)

Captured ADM particles transport heat and reduce the solar temperature.

 The neutrino production rate is sensitive to the solar temperature.



Basics of Neutron stars

Mass:                          

Density:

Escape V:

Temperature:

∼ 1057 protons ∼ 1.4 Solar Mass

∼ 1.4× 103 kg/m3 ∼ 1018 kg/m3

∼ 2× 10−3c ∼ 0.6c

∼ 1.6× 107 K ∼ 105 − 106 K

These captured ADM particles may form a mini 
black hole at the neutron star center.

Advantages: high capture rate; fast thermalization; Bose-Einstein condensate 
(Bosonic ADM)



ADM in a Neutron Star
Capture (Step 1)

Thermalization (Step 2) 

ADM in the thermal state

ADM in the BEC state

typical neutron star radius

Self-gravitation (Step 3) 

Without a BEC

With a BEC



Chandrasekhar Limit
Fermions: gravity VS. Fermi pressure

Bosons: gravity VS. zero point energy
E ∼ −GNm2
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Beyond this limit, the system can collapse to a black hole. 

NOTE



Minimal Black Holes

Baryon accretion Hawking radiation
Hawking wins if the initial black hole mass is less than



Nearby Old Pulsars
But we see many very old pulsars! We can derive a 
bound on the ADM-neutron scattering cross 
section. 

Ways to avoid this bound? 



DM Self-interactions

Self-interacting DM Spergel, Steinhardt (1999); Dave, 
Spergel, Steinhardt, Wandelt (2000)

contact interactions Spergel, Steinhardt (1999); Recent ADM 
models, see Mads` talk

mediated by massless mediators

Feng, Tu, HBY (2008); Ackerman, Buckley, Carroll, Kamionkowski (2008); 
Feng, Kaplinghat, Tu, HBY (2009) 

mediated by light massive mediators

Feng, Kaplinghat, HBY (2009); Buckley, Fox (2009); Loeb, Weiner (2010)



Bullet Cluster

Markevitch, Gonzalez, Clowe, Vikhlinin, 
David, Forman, Jones, Murray, Tucker 
(2003)
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Ellipticity of DM Halos
If DM self-interactions are strong enough to 
create O(1) velocity change, they can erase 
the anisotropy of the DM velocity dispersion 
and create spherical halos. 

There are elliptical galaxies and clusters.

We consider the well-studied, nearby (about 
25 Mpc away) elliptical galaxy NGC720.

v0 � 340 km/s, ρX � 4 GeV/cm3



Ellipticity of DM Halos
We consider the rate to create O(1) velocity 
change

Determine the coefficient by comparing with 
simulation.

About 3 orders of magnitude stronger than 
constrains from the Bullet Cluster.
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Summary

Colliders excludes many ways in which the 
ADM symmetric component can annihilate 
away.

We can use stars to probe ADM.

The ellipticity of DM halos put (the) strong
(est?) constraints on DM self-interactions.


