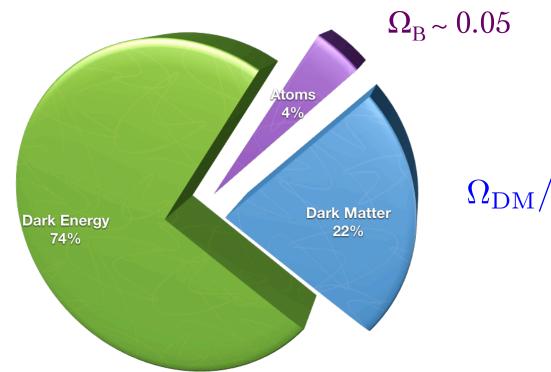
Asymmetric dark matter

Part I - Models

Incl. work in collaboration with:A. Belyaev, R. Foadi, F. Kahlhoefer,J. March-Russell, C. McCabe, M. McCullough,F. Sannino, S. Sarkar, K. Schmidt-Hoberg.

Part II by Hai-Bo Yu

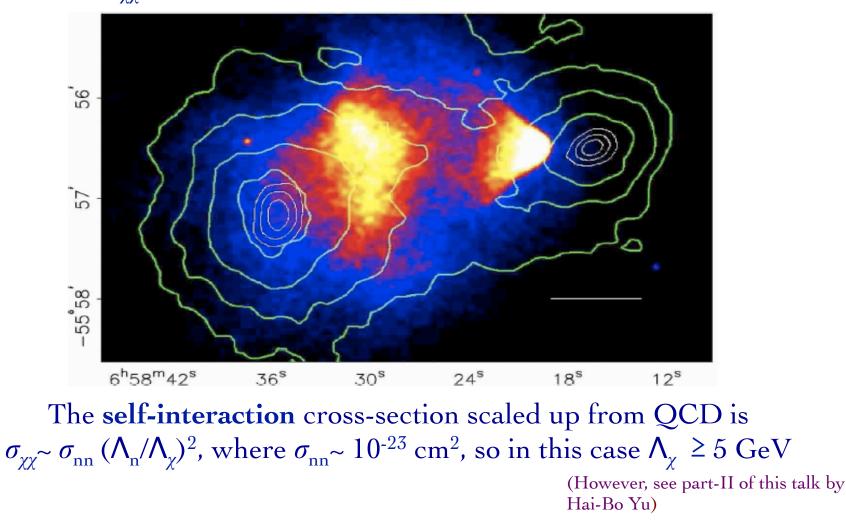

Mads Toudal Frandsen Rudolf Peierls Centre for Theoretical Physics

Dark Matter Underground and in the Heavens, CERN, July 2011

Outline

- Motivate asymmetric dark matter genesis
- Overview of baryogenesis and ADM-genesis frameworks
- ADM from Technicolor New Strong Dynamics

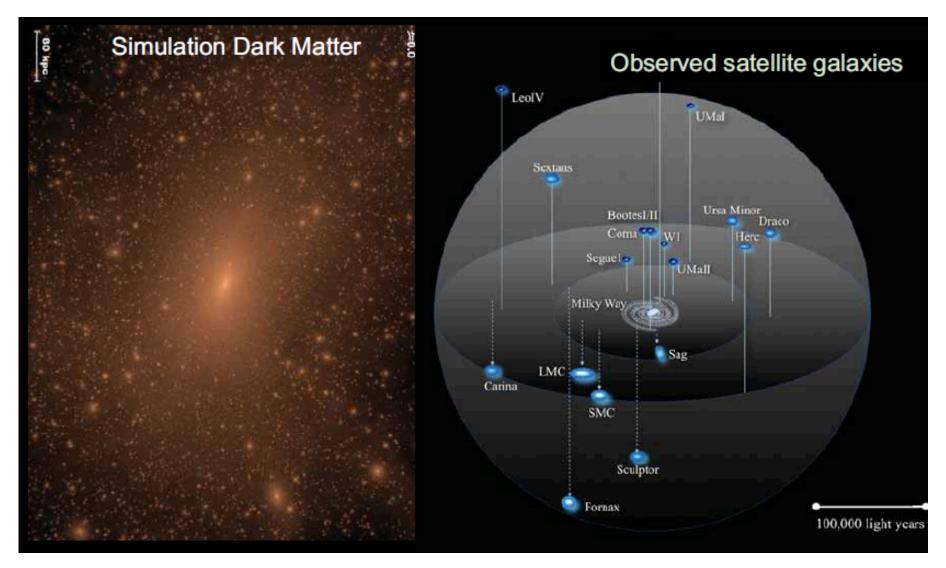
What is the world made of?

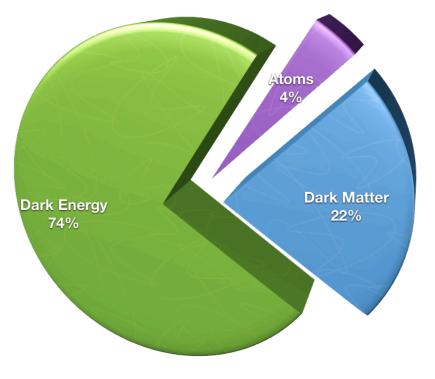


Baryons (but *no* antibaryons)

 $\Omega_{\rm DM}/\Omega_{\rm B}\approx 5$

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ m QCD}$	Baryons	U(1) Baryon number	τ > 10 ³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium Asymmetry	$\Omega_{ m B} \sim 10^{-10}$ cf. observed $\Omega_{ m B} \sim 0.05$


What is the strength or scale of DM (self-interactions) Λ_{γ} ?


 $\sigma_{\chi\chi} \leq 10^{-24} \text{ cm}^2/\text{GeV}$ from the 'Bullet cluster'

Amusingly
$$\Lambda_{\chi} \sim \sqrt{f_{\pi} v_{\rm EW}} \approx 5 GeV$$

Self-interacting dark matter has been invoked to reduce excessive substructure in simulations of *collisionless* dark matter (Spergel & Steinhardt '99)

(See also talk by M. Kuhlen this workshop)

 $\Omega_{\rm B} \sim 0.05$

Baryons (but *no* antibaryons)

 $\Omega_{\rm DM}/\Omega_{\rm B} \approx 5$

Mass scale	Particle	Symmetry/	Stability	Production	Abundance
		Quantum #			
$\Lambda_{ m QCD}$	Baryons	Global U(1) Baryon number	τ > 10 ³³ yr (dim-6 OK)	'freeze-out' from thermal equilibrium Asymmetry	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$

What should the world be made of?

What do we expect for the *symmetric* thermal relic abundance of baryons?

$$\dot{n} + 3Hn = -\langle \sigma v \rangle (n^2 - n_{\rm T}^2)$$
Chemical equilibrium is maintained
as long as annihilation rate exceeds
the Hubble expansion rate
'Freeze-out' occurs when annihilation rate:

$$\Gamma = n\sigma v \sim m_N^{3/2}T^{3/2}e^{-m_N/T}\frac{1}{m_{\pi}^2}$$
becomes comparable to the expansion rate

$$H \sim \frac{\sqrt{gT^2}}{M_{\rm P}} \text{ where } g \Rightarrow \# \text{ relativistic species}$$
i.e. freeze-out occurs at $T \sim m_B/45$, with:

$$\frac{n_B}{n_{\gamma}} = \frac{n_{\bar{B}}}{n_{\gamma}} \sim 10^{-19}$$

However the observed ratio is 10⁹ times *bigger* for baryons, and there are *no* antibaryons, so we must invoke an **initial asymmetry**:

$$\mathcal{N}_B\equiv rac{n_B-n_{ar{B}}}{n_\gamma}\sim 10^{-9}$$

What *should* the world be made of ?

Mass scale	Particle	Symmetry/ Quantum #	Stability	Production	Abundance
$\Lambda_{ m QCD}$	Nucleons	Baryon number	τ > 10 ³³ yr (dim-6 OK)	 'free of from thermal equilibrium Asymmetric baryogenesis 	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{ m Fermi} \sim G_{ m F}^{-1/2}$	Neutralino?	R-parity?	Violated? (matter parity adequate for p stability)	'freeze-out' from thermal equilibrium	$\Omega_{\rm LSP} \sim 0.25$

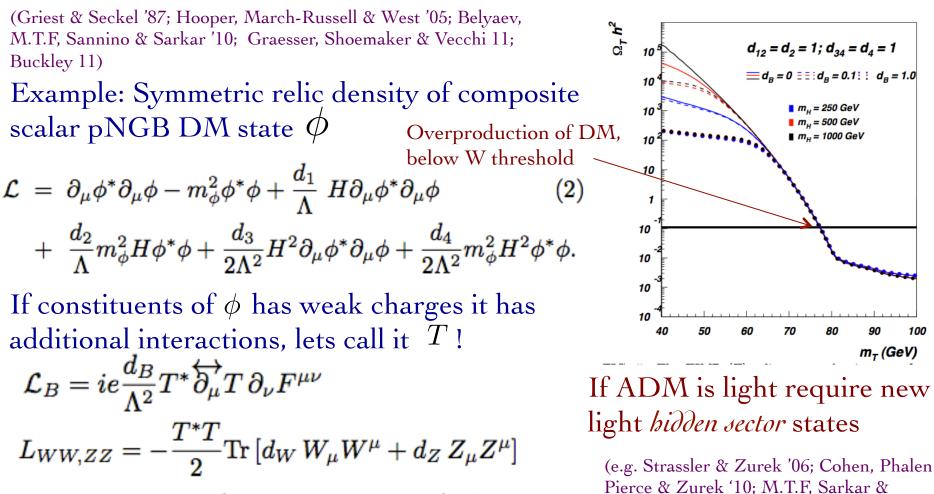
The 'WIMP miracle' naturalised e.g. in (softly broken) supersymmetry :

 $\Omega_{\chi}h^{2} \simeq \frac{3 \times 10^{-27} \text{cm}^{-3} \text{s}^{-1}}{\langle \sigma_{\text{ann}} v \rangle_{T=T_{\text{f}}}} \simeq 0.1 \quad \text{since } \langle \sigma_{\text{ann}} v \rangle \sim \frac{g_{\chi}^{4}}{16\pi^{2} m_{\chi}^{2}} \approx 3 \times 10^{-26} \text{cm}^{3} \text{s}^{-1}$ In this framework it is puzzling why $\Omega_{\text{DM}}/\Omega_{\text{B}} \approx 5$?

Natural to speculate that DM genesis χ may be linked to baryogenesis with an asymmetric relic density related to that of baryons:

 $\Omega_{\chi} = (m_{\chi} \mathcal{N}_{\chi}/m_{\rm B} \mathcal{N}_{\rm B}) \Omega_B$

<u>Sakharov conditions for baryogenesis:</u>
1. Baryon number violation
2. *C* and *CP* violation
3. Departure from thermal equilibrium


Classically baryon number can be violated by dim-6 operators in SM

When T>~ M_W Baryon number is also violated in the SM through sphaleron-mediated processes that preserve B - L, but violate B + L ...

...*CP*-violation is *too weak* (and the electroweak phase transition is a 'cross-over')

The observed matter-antimatter asymmetry *requires* BSM physics The matter we *know* originated *non*-thermally in the early universe The same or a similar mechanism could generate the DM density (See list of references in part-II of this talk by Hai-Bo Yu)

- ADM is a complex field, either Dirac fermion or complex scalar
- Requires asymmetry generating or transferring operator and
- large annihilation cross-section to suppress symmetric relic density

Schmidt-Hoberg (11)

(M.T.F & Sannino '10; Belyaev, M.T.F, Sannino & Sarkar '10)

Some frameworks for baryogenesis:					
	oshimura 78; Dimopoulos & sskind '78)				
2. Electroweak baryogenesis (EWB) (sphalerons & 1 st order phase transition)	(Kuzmin, Rubakov & Shaposhnikov '85)				
3. Leptogenesis (sphalerons, 1^{st} or 2^{nd} order phase transition)	(Fukugita & Yanagida '86)				
 4. Affleck-Dine baryogenesis (Decays of coherent scalar fields in SUSY) 	(Affleck & Dine '84)				
5. Spontaneous baryogenesis	(Cohen & Kaplan '87)				
6. Cold baryogenesis	(Krauss & Trodden '99)				
7	(Reviews in Dine & Kusenko '03; Cline '06; Schmidt '11)				

DMgenesis can be linked to baryogenesis in any of these frameworks

Whatever the baryo/lepto-genesis mechanism, SM sphalerons may transfer an asymmetry if DM (constituents) carry weak charges

frameworks for DM-genesis linked to baryogenesis:

1. Via (e.g.) GUT scale baryogenesis (Original technibaryon ADM from technicolor proposal)^(Nussinov 85) Via Electroweak baryogenesis (EWB) 2. (Kaplan 92) (requires 1st order EW phase transition) 3. Via sphalerons/leptogenesis (Barr, Chivukula & Farhi (sphalerons, 1st or 2nd order phase transition) 90; Gudnason, Kouvaris & Sannino 05) Via Affleck-Dine baryogenesis 4. (e.g. Enqvist & McDonald '98) Via spontaneous baryogenesis 5. (March-Russell & McCullough (11)Cold baryogenesis 6. (Konstandin & Servant '11)

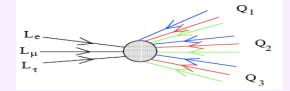
7. ...

Common for 2., 3. is that DM carries $U(1)_X$ charge with $U(1)_X \times SU(2)_L^2$ anomaly In 2. sphalerons produce the baryon/DM asymmetry – co-generation.

In 3. sphalerons transfer/process an existing asymmetry into DM – sharing.

Note that the DM or associated new physics sector may also change the EW phasetransition relevant for 2. (Grojean, Servant & Wells '04; Cline, Jarvinen & Sannino 08,

Jarvinen, Ryttov & Sannino 09,...)


Some classification of ADM models – models with asymmetry transfer

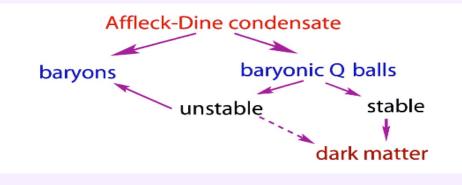
Asymmetry transfer/sharing:

- B or L asymmetry generated at a high scale, e.g. Leptogenesis. $T_{
 m dec}$ —
 - Below B-L is preserved, but transferred to DM
 - Transfer operator decouples and asymmetry is 'frozen in'
 - Symmetric component is annihilated away

E

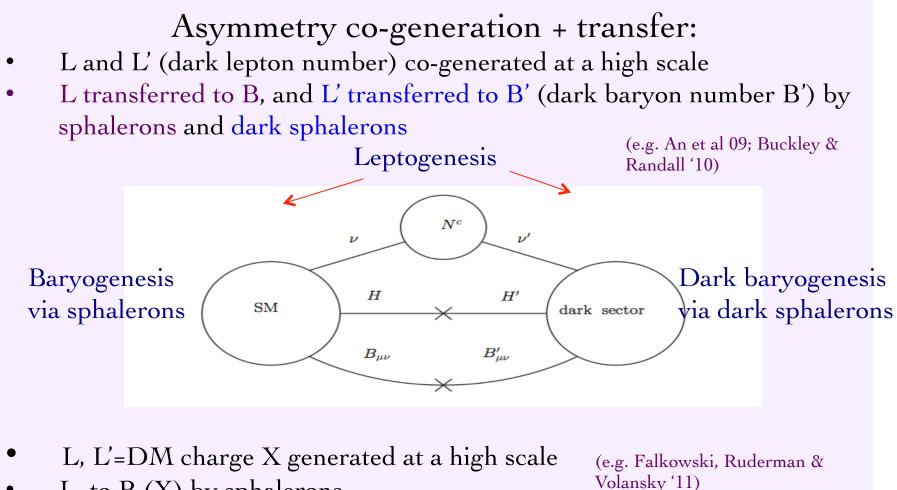
Transfer via X and weak charges of DM (constituents) $U(1)_X \times SU(2)_L^2$ anomaly, dim-4 (nonpert.) SM sphalerons, with $T_{\rm sph} \sim v_{\rm EW}$

(e.g. Barr, Chivukula & Farhi 90)


Light ADM via SM sphalerons challenging but possible (M.T.F, Sarkar & Schmidt-Hoberg '11)

Transfer via induced L or B charges of DM some higher dim. decay operator with model dependent T_{dec} $\mathcal{O}_{B-L}\mathcal{O}_X$ $\Delta W_{\text{eff}} = \frac{1}{M_i} \bar{X}^2 L_i H_u$ (e.g. Farrar, Zaharijas '05; D.E Kaplan, Luty & Zurek '09) Asymmetry co-generation:

- B and DM asymmetries from same microphysics.
- Transfer operator decouples and either B-L & B-X or B-L+X is preserved


EWB co-generation via weak charges of DM
(constituents)(e.g Kaplan 92) $U(1)_X \times SU(2)_L^2$ anomaly, sphalerons, 1st order phase transition, $T_{sph} \sim v_{EW}$

Or via new decaying states (e.g. Affleck-Dine co-genesis)

(e.g. Enqvist & McDonald '98; Hall, March-Russell & West 10; Hook 11; Cheung & Zurek 11; March-Russell & McCullough '11; Graesser, Shoemaker & Vecchi '11)

ADM models with 'Hybrid' asymmetry generation

• L to B (X) by sphalerons

ADM from Technicolor or New Strong Dynamics

(Nussinov 85, Barr, Chivukula and Farhi 90)

Technicolour is a 'natural' framwork for ADM:

- Natural model of EWSB
- Composite neutral technibaryons charged under global $U(1)_{\text{TB}}$ part of unbroken chiral symmetries
- TB has weak charged constituents there is $U(1)_{\text{TB}} \times SU(2)_L^2$ anomaly
- Large annihilation cross-section so no symmetric cross-section (in general)

Mass	Particle	Symmetry/	Stability	Production	Abundance
scale		Quantum #			
$\Lambda_{ m QCD}$	Nucleons	Baryon number $U(1)_B$	τ > 10 ³³ yr (dim-6 OK)	'Freezon from thermal equilation Asymmetric baryogenesis	$\Omega_{\rm B} \sim 10^{-10}$ cf. observed $\Omega_{\rm B} \sim 0.05$
$\Lambda_{\rm Fermi} \sim G_{\rm F}^{-1/2}$	Neutralino? Technibaryon?	R-parity? Technibaryon number $U(1)_{\mathrm{TB}}$	violated? $\tau \sim 10^{18} \text{ yr}$ e ⁺ excess?!	 'Freeze-out' from thermal equilibrium Asymmetric (like the observed baryons) 	$\Omega_{\rm LSP} \sim 0.25$ $\Omega_{\rm TB} \sim 0.25$

Technicolor (New Strong Dynamics)

The SM gauge group is augmented:

 $G_{SM} \rightarrow SU(3)_{\rm c} \times SU(2)_{\rm W} \times U(1)_{\rm Y} \times G_{\rm TC}$.

The Higgs sector of the SM is replaced: $Q_{\rm L}^{a} = \begin{pmatrix} U^{a} \\ D^{a} \end{pmatrix}_{\rm L}, \ Q_{\rm R}^{a} = (U_{\rm R}^{a}, D_{\rm R}^{a}),$ $a = 1, \ldots d(\mathcal{R}_{\rm TC})$ $\mathcal{L}_{Higgs} \rightarrow -\frac{1}{4} F_{\mu\nu}^{a} F^{a\mu\nu} + i \bar{Q}_{\rm L} \gamma_{\mu} D^{\mu} Q_{\rm L} + i \bar{Q}_{\rm R} \gamma_{\mu} D^{\mu} Q_{\rm R} + \ldots$

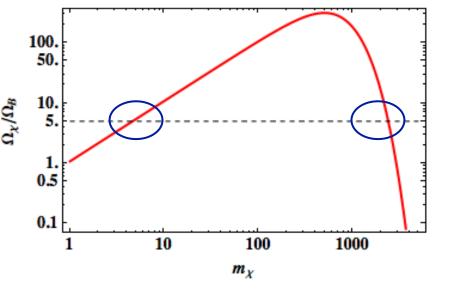
Lightest Technibaryon stable due to unbroken global $U(1)_{\mathrm{TB}}$ symmetry

Minimal chiral symmetries: 3 GB's + Custodial + DM.

 $SU_L(2) \times SU_R(2) \times U_{TB}(1) \rightarrow SU_V(2) \times U_{TB}(1)$.

However, $U(1)_{\text{TB}}$ is anomalous due to the EW anomaly, when the technifermions are charged under SU(2)_EW $\partial_{\mu}J^{\mu}_{TB} = \frac{1}{2\sqrt{2}} \frac{g^2}{32\pi^2} \epsilon_{\mu\nu\rho\sigma} W^{\mu\nu} W^{\rho\sigma}$, and $J^{\mu}_{TB} = \frac{1}{2\sqrt{2}} \left(\bar{U}\gamma^{\mu}U + \bar{D}\gamma^{\mu}D \right)$

Technibaryon ADM


The ADM relic density is simply related to the baryon relic density (Nussinov 85)

$$\Omega_{\chi} = (m_{\chi} \mathcal{N}_{\chi}/m_{\mathrm{B}} \mathcal{N}_{\mathrm{B}}) \Omega_B$$

Nussinov thought of TeV scale technibaryon when relic density was less well known so $N_{\chi} \sim N_{B} \ m_{\chi} \sim 1$ TeVwas close enough...

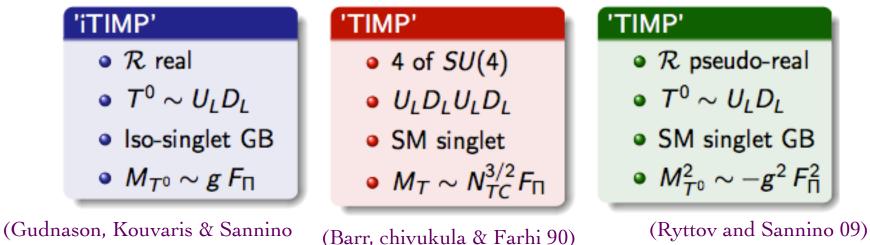
Now similar asymmetries (such as
from GUTs or from sphalerons) $\mathcal{N}_{\chi} \sim \mathcal{N}_{B} \Rightarrow m_{\chi} \sim 5 \text{ GeV}$ In fact. there are 'two' solutions viaSphalerons (e.g. staring from Leptogenesis):

(Barr, Chivukula and Farhi 90)

$$\frac{\Omega_{\chi}}{\Omega_B} \sim \frac{m_{\chi}}{m_B} \times \begin{cases} 1 & \text{for } m_{\chi} \sim GeV \\ (\frac{m_{\chi}}{T_{\text{Sph}}})^{3/2} e^{-m_{\chi}/T_{\text{Sph}}} & \text{for } m_{\chi} \sim TeV \end{cases}$$

Really Ω_{χ}/Ω_B depends on L/B (and possible new L') so more general masses are possible.

(Barr, Chivukula and Farhi 90; Gudnasone, Kouvaris & Sannino '05)


Note BCF did not include charge neutrality of universe but this does not change qualitative picture

(Harvey & Turner 90)

pNGB Technibaryons in Minimal Walking Technicolor

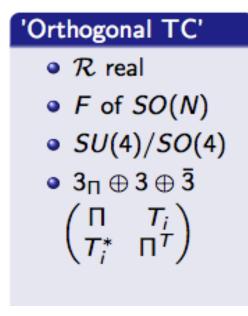
(Sannino and collaborators '05;...)

Example of more general solutions termed: Techni-Interacting Massive Particles (TIMPs)

General analysis of signals and the annihilation cross-section

(Foadi, M.T.F & Sannino 08; Belyaev, M.T.F, Sarkar & Sannino 10, Del Nobile, Kouvars & Sannino '11)

'Minimal Dark Matter' in Technicolor theory space (Cirelli, Fornengo Strumia '02)


05; M.T.F & Sannino 09)

Techni-Interacting Massive Particles

Minimal Technicolor Theory Space

Minimal Technicolor: 2 Dirac Flavors. No QCD charges.

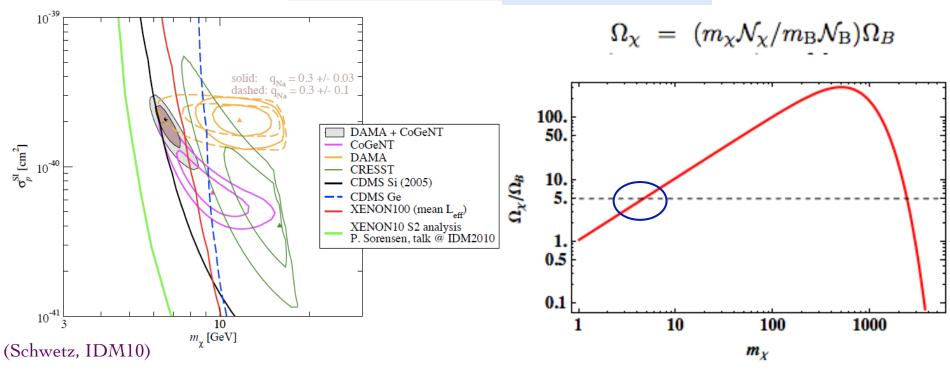
$$Q_L = \left(U_L^{+1/2}, D_L^{-1/2}\right)^T$$
, $U_R^{+1/2}$, $D_R^{-1/2}$.

'QCD TC'

- *R* complex
- F of SU(N)

$$\Pi = \begin{pmatrix} \Pi^{-} & \Pi^{+} \\ \Pi^{-} & \Pi^{0} \end{pmatrix}$$

'Symplectic TC'


- \mathcal{R} pseudo-real
- F of Sp(2N)
- SU(4)/Sp(4)

•
$$3_{\Pi} \oplus 1 \oplus \overline{1}$$

 $\begin{pmatrix} \Pi & T_s \\ T_s^* & \Pi^T \end{pmatrix}$

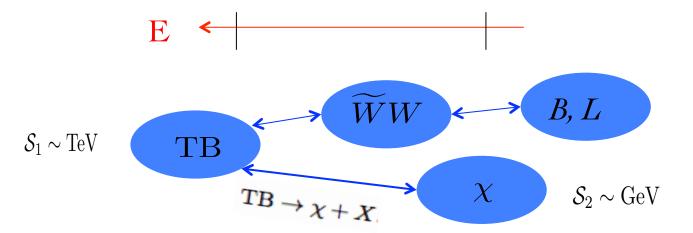
(Ryttov and Sannino 09)

(M.T.F & Sannino 09)

GeV scale ADM

Recent surge of interest in GeV scale ADM after hints of light DM in direct detection experiments (Talks this workshop by Collar,

Schmidt-Hoberg, Zupan)


Can you get $N_{\chi} \sim N_{B}$ and light ADM via sphalerons in Technicolor (in agreement with constraints from e.g. W/Z measurements?)

GeV scale ADM and EWSB from two sectors

Assume $2 \mbox{ sectors } \mathcal{S}_1 \sim {\rm TeV}$, $\mathcal{S}_2 \sim {\rm GeV}$

(M.T.F, Sarkar and Schmidt-Hoberg 11; M.T.F, Kahlhoefer, Sarkar & Schmidt-Hoberg 11 and work in progress)

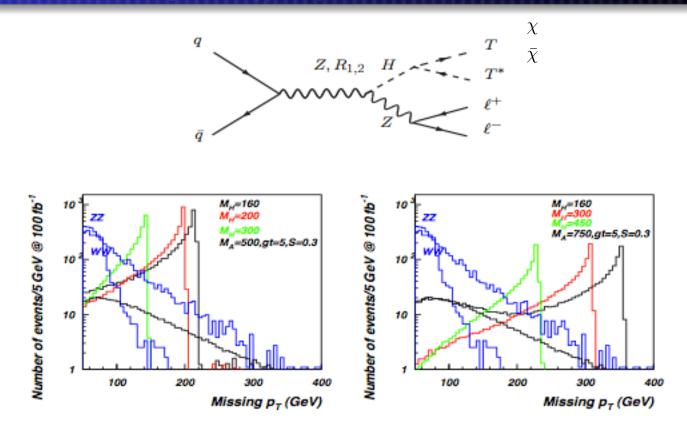
- i) S₁ breaks EW symmetry dynamically at a scale Λ₁ composite spectrum includes O(TeV) mass particles TB carrying U(1)_{TB} charge S₂ is SM singlet sector becoming strongly interacting at Λ₂ of O(GeV)
 composite spectrum includes O(GeV) mass particles χ carrying U(1)_{TB} charge
- $S_{1,2}$ coupled via $U(1)_{\rm TB}$ preserving decay operator ${\rm TB} \rightarrow \chi + X$.

 S_1 States (constituents) carry weak charges and are connected to sphalerons TB $\rightarrow \chi + X$ Is in equilibrium until $T \lesssim T_{\rm sph}$

GeV scale ADM and EWSB from two scale strong dynamics

Assume new strong dynamics with weak charged fermions Q(Dietrich, Sannino & Tuominen 05; Sannino & Ryttov 08; Galloway, Evans, Luty & Tacchi '10) and SM Singlet fermions λ ... motivated also by constraints from EW precision measurements We identify composite states $TB \sim Q \cdots Q$ and $\chi \sim \lambda \cdots \lambda$ E D^a , $U^a_{\rm R}$, $D^a_{\rm R}$, λ^b $TB \rightarrow \chi + X$ $S_2 \sim GeV$ $\mathcal{S}_1 \sim \text{TeV}$ $a = 1, \ldots d(\mathcal{R}_1), b = 1, \ldots d(\mathcal{R}_2).$

(Raby, Dimopoulos Scale separation can arise due do different Casimirs $\alpha_c = \frac{\pi}{3C_2(\mathcal{R})}$ & Susskind 80)


Can also arise/be enhanced in presence of 4-fermion interactions

(M.T.F. Sarkar and Schmidt-Hoberg 11

Recent 1-loop exact susy comp of a 2-scale model (Antipin, Mojaza & Sannino '11)

Model provides natural EWSB, DM stability and (putative) light ADM via weak sphalerons – decay operator can but need not arise in TC sector itself Achieving scale separation is obviously a challenge

(i)TIMP missing energy signals

(Foadi, M.T.F and Sannino 08; Godbole, Guchait, Mazumdar, Moretti and Roy 03).

Summary

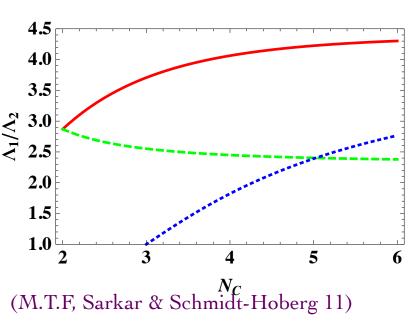
Asymmetric dark matter is motivated by the observed asymmetry of baryonic matter and the desire to explain why $\Omega_{\rm DM}/\Omega_{\rm B} \approx 5$

- ADM natural in the framework of New Strong Dynamics such as Technicolour
 Recently vigorous ADM model building activity in a large variety of frameworks
 - Interesting alternative to WIMP paradigm...Experiment will tell

Appendices

Two scales from strong dynamics

(Marciano 80; Lane & Eichten 89)


Critical coupling for ChiSB depends on the fermion rep...

$$\alpha_{\rm c} = \frac{\pi}{3C_2(\mathcal{R})} \qquad \alpha_* = -4\pi \frac{\beta_0}{\beta_1}$$

(Raby, Dimopoulos & Susskind 80)

One-loop estimate of scale separation with 2 representations

$$\frac{\Lambda_1}{\Lambda_2} \simeq \exp\left[\frac{2\pi}{\beta_0(\mathcal{R}_2)} \left(\alpha_{\rm c}(\mathcal{R}_1)^{-1} - \alpha_{\rm c}(\mathcal{R}_2)^{-1}\right)\right]$$

and in the NJL model on the 4fermion coupling (Appelquist et al 88, Kondo et al 89, + $\frac{4\pi^2 g_1}{\Lambda^2 N_1 d(\mathcal{R}_1)} \left[(\bar{Q}Q)^2 + (\bar{Q}i\gamma_5 T^a Q)^2 \right]$ $\alpha_{\rm c}(\mathcal{R}_1, g_1) = \begin{cases} 4\left(\sqrt{g_1} - g_1\right) \times \alpha_{\rm c}(\mathcal{R}_1) & \text{for } \frac{1}{4} < g_1 \le 1, \\ \alpha_{\rm c}(\mathcal{R}_1) & \text{for } 0 \le g_1 < \frac{1}{4}. \end{cases}$ τv 1000 Λ_1/Λ_2 100 10 0.3 0.4 0.5 0.7 0.8 0.9 1.0 0.6 Recent 1-loop exact susy comp of a 2-scale тодеl (Antipin, Mojaza & Sanninol1)