
Sterile neutrinos as dark matter
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CERN

Dark matter underground
and in the heavens



Higgs - last unseen element of the SM

The quest that started from attempts to explain atomic and nuclear
physics, taking into account Quantum Mechanics and Relativity
resulted in construction of the Standard Model of elementary
particles
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BSM physics

Already now we know a number of observational beyond the
Standard Model phenomena :

→ Neutrino oscillations : transition between neutrinos of different flavours
(νe, νµ, ντ ) means violation of lepton flavour symmetries (but not total lepton

number!)

→ existence of dark matter (why observed gravity of galaxies and clusters is
so strong?)

→ the absence of anti-matter in the Universe

→ inflation (homogeneity of the observed Universe seem to require correlated
initial conditions for causally non-connected regions)

→ dark energy (If it will be shown that accelerated expansion of the Universe
is caused not by a small cosmological constant, but by some other unknown
substance – what is this substance?)
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Fine-tuning problems

¥ Important direction of the theoretical particle physics research of
the last decades is the problem of “naturalness” – understanding
the structure of the Standard Model, small values of some
parameters, symmetries, etc:

– Gauge hierarchy problem (why the Higgs mass is small and stable
against radiative corrections)

– CP problem (why neutron electrical dipole moment is so small?)

– Cosmological constant problem (why is cosmological constant zero
or almost zero?)

Oleg Ruchayskiy S TERILE NEUTRINOS AS DARK MATTER 3



Where can we expect new physics?

¥ Neutrino oscillations mν ∼
√

∆m2
atm ∼ 10−2 eV.

See-saw mechanism mν ∼ v2/Λ, where v = 〈H〉 = 174 GeV and
new scale Λ ∼ 1015 GeV

¥ Dark matter

– particles with weak cross-section will have correct abundance
ΩDM (“WIMP miracle”). New scale ∼ 1 TeV

– Axions. New scale 1010 − 1012 GeV.

¥ Fine-tuning problems:

– hierarchy problem: ∼ 1 TeV
– grand unification: ∼ 1015 GeV
– CP-problem: 1010 − 1012 GeV (if provided by axion)

¥ . . .
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Dark matter in the Universe

¥ ΛCDM: about 20% of total energy
density is in the form of non-baryonic
matter

¥ This dark matter is scale-free (non-
interacting, “cold”, . . . )
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Sterile neutrino dark matter

¥ Massive neutrinos – probably the first DM candidate. Did not work
– particles remain relativistic for too long. ⇒ Standard Model
neutrinos do not contribute significantly to the Universe mass
balance at matter-dominated epoch (CMB, LSS, . . . ) Dodelson &

Widrow (1993)

Shi & Fuller
(1998)

Abazajian et
al. 2001-2005

Asaka,
Shaposhnikov
et al. 2005-. . .

¥ Sterile neutrinos (right-handed counterparts of SM neutrinos):
heavier (“colder”) than ordinary neutrinos and couple to the
Standard Model super-weakly. ⇒ Dark matter candidate

¥ DM sterile neutrino does not contribute to the neutrino oscillations
⇒ two more particles are needed.

¥ To be a DM candidate sterile neutrino should couple super-weakly
to the Standard Model particles ⇒ its properties (abundance,
primordial velocities, etc.) are sensitive to the content of primordial
plasma
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Standard Model

Standard Model neutrinos are strictly massless
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Right-chiral particles

¥ Massless fermions can be left and right-chiral (left and right
moving):

(iγµ∂µ − ©
©©H
HHm)ψ =

(

©
©

©
©*0

−m i(∂t+~σ · ~∇)

i(∂t−~σ · ~∇)
©

©
©

©*0
−m

)

(

ψL

ψR

)

= 0

where γ5ψR,L = ±ψR,L and γ5 = iγ0γ1γ2γ3

¥ Mass term mixes left and right movers

¥ To make neutrinos massive, we can add right-chiral counterparts
NI

Lneutrino mass = iN̄I/∂NI +

0

@

ν̄e − NI

ν̄µ − NJ

. . .

1

A

| {z }

left-right mixing

+????
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Right-chiral neutrino counterparts?

The most natural explanation of neutrino experiments – adding right-
chiral counterparts to the Standard Model
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Properties of right-chiral neutrinos

¥ Charges of right neutrinos?

– SU(3) : singlets
– SU(2) : singlets (ν = LH̃ – singlet combination)
– UY (1) : singlets (Y (ν) = Y (Higgs))

¥ Right-chiral neutrinos carry no charge under the Standard Model
interactions ⇒ sterile neutrinos

¥ Can add for them a Majorana mass

Lsee-saw = iN̄I/∂NI +

0

B

B

@

mixing matrix
ν̄e − NI

ν̄µ − NJ

. . .

1

C

C

A

| {z }

Dirac mass MD

+

„

N − N

mixing

«

| {z }

Majorana mass MI

¥ See-saw Lagrangian violate flavour and total lepton numbers
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See saw Lagrangian

Lsee-saw = iN̄I/∂NI +

0

@

ν̄e − NI

ν̄µ − NJ

. . .

1

A

| {z }

Dirac mass MD

+

„

N − N

mixing

«

| {z }

Majorana mass MI

¥ Standard Model neutrino masses are given by see-saw formula :

Neutrino mass matrix = −MDirac
1

MMajorana
MT

Dirac

¥ Neutrino mass matrix – 9 parameters . Dirac+Majorana mass
matrix – 11 (18) parameters for 2 (3) sterile neutrinos.

¥ Two sterile neutrinos are enough to fit the neutrino oscillations data.

Scale of Dirac and Majorana masses is not fixed!
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Neutrino Minimal Standard Model
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Some general properties of sterile neutrino

Sterile neutrinos behave as superweakly interacting heavy neutrinos

MI < 1 MeV MI & 1 MeV MI & 140 MeV . . .
NI → ννν̄ NI → νe+e− NI → π±e∓

NI → νγ NI → π0ν

Mixing angle with usual neutrinos θI:

θ2
I =

∑

α=e,µ,τ

M2
Dirac,αI

M2
Majorana,I

≪ 1

Fermi constant: GF→θGF

ν ν̄

Z0

Ns

e+e−

Lifetime τ ∝ θ−2
I M−5

I . Can be cosmologically long

Mixing angle θ ≪ 1 means that sterile neutrinos can be out of
equilibrium in the early Universe
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Entire history of the Universe

Neutrino Minimal Standard Model ( νMSM) solves several beyond
the Standard Model problems Asaka,

Shaposhnikov,
(2005)

X . . . explains neutrino oscillations

X . . . matter-antimatter asymmetry of the Universe

X . . . provides a viable dark matter candidate that can be cold, warm
or mixed (cold+warm)

¥ The νMSM is self-consistent and does not require any other
particles ⇒ we have a complete description of the Universe from
the time of reheating

¥ Coupled with Higgs inflation the νMSM is a complete and self-consistent theory Bezrukov &
Shaposhnikov
(2008)

up to the Planck scale
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Thermal history of the νMSM

¥ Two sterile neutrinos are responsible for neutrino oscillations.

¥ They determine the properties of the third (DM) sterile neutrino

¥ Physics of the early Universe with (out-of-equilibrium) sterile
neutrinos

High temp
50 − 10 GeV 500 − 100 MeV 1/T

1

100 GeV T+ T−

SphaleronsasymmetryGenerationof leptonGenerationasymmetryof baryon
Sterile neutrino intera
tion: ΓN(T )
H(T )

Dark matterprodu
tionmagneti
 �eldsLeptonasymmetry+
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Sakharov conditions in the SM
Sakharov
(1967)Quick reminded: necessary conditions for generation of baryon

asymmetry of the Universe (Sakharov conditions ): Kuzmin,
Rubakov,
Shaposhnikov
(1985)+ B-number violation → sphalerons

Farrar &
Shaposhnikov
(1994)

? CP (and C) non-conservation → phase of the CKM matrix

Kajantie et al.
(1996)– Out-of-equilibrium processes → no phase transition in the SM for

mH > 72 GeV!

What changes in the νMSM?
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Sakharov conditions in the (ν)MSM

Necessary conditions for generation of baryon asymmetry of the Sakharov
(1967)Universe (Sakharov conditions ):
Kuzmin,
Rubakov,
Shaposhnikov
(1985)

+ B-number violation → sphalerons

Farrar &
Shaposhnikov
(1994)

+ CP (and C) non-conservation → phase of the CKM matrix plus
additional CP phases in the Dirac mass matrix of sterile
neutrinos

Kajantie et al.
(1996)

Asaka,
Shaposhnikov
(2005)

+ Out-of-equilibrium processes → no phase transition in the νMSM
for mH > 72 GeV! but Yukawa couplings of sterile neutrinos
are small enough to keep them out of thermal equilibrium at
T ∼ 100 GeV

Baryogenesis in the νMSM goes through
leptogenesis
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Baryo- and lepto-genesis in the νMSM

Lep
ton

 as
ymm

etr
y

Generation of leptonasymmetry
50 − 5 GeV 1/T

Generation of baryonand lepton asymmetryΓN(T )
H(T )

1

T+
Sphalerons

100 GeV
¥ At T > Tsph lepton asymmetry gets converted “on-the-fly” to

baryon asymmetry by sphalerons — baryogenesis

¥ At Tsph > T > T+ lepton asymmetry continues to be generated

(where |F |2T+ =
T2
+

M and the Yukawa coupling |F |2 ∼
Mmatm

v2 )

¥ ⇒ In the νMSM Ltot(T+) ≫ Btot(Tsph)
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Left-right asymmetry in primordial plasma

¥ Classically, the number of left and right massless fermions is
conserved independently (in particular, number of left and right
electrons at high temperatures)

¥ Introduce a chemical potential µL,R for each conserved quantity.

The density matrix is ˆ̺ = exp

(

−Ĥ
T + µRN̂R + µLN̂L

)

Equilibrium

value of any quantity is determined by these numbers (T, µL, µR)

¥ Left-handed electrons eL, ēL – inherit lepton asymmetry neL
6= nēL

from active neutrinos through weak processes (ΓWeak ≫ Hubble)

¥ The difference of chemical potentials ∆µ = µL − µR in the

electron sector appears
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Chirality flipping rates in the SM

0.5 1.0 5.0 10.0 50.0 100.0
T@GeVD

Rates

Hubble

Gflip,EM

Gflip,Weak

ΓEM ∝ α2T
( m

3T

)2

ΓW ∝ G2
FT 5

( m

3T

)2

H(T ) =
T 2

M∗

∂∆µ

∂t
= −Γflip∆µ ⇒ ∆µ ∝ e−Γflipt
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Source of asymmetry?

¥ Evolution of the difference of chemical potential:

∂∆µ

∂t
= − Γflip ∆µ + S(t) + . . .

Chirality flipping rate Source of left-right asymmetry

¥ The situation when Γ ≫ H implies source-tracking solution
(system forgets initial conditions)

∆µ ≈
S(t)

Γ

works if ∂ log S(t)
∂t ≪ Γflip – the faster chirality flipping the better
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Maxwell equations

¥ The presence of different number of left and right fermions leads to
additional terms in the effective Lagrangian for gauge fields

¥ As a result Maxwell equations get term current, proportional to ∆µ: Vilenkin
(1978)

Redlich &
Wijewardhana
(1985);

Fröhlich et al.
(2000–2001)

curl ~E = −
∂ ~B

∂t

curl ~B = σ ~E +
e2

4π
∆µ~B

∂∆µ

∂t
∝ e2

16π2
~E · ~B − Γflip∆µ

Chiral anomaly
Joyce &
Shaposhnikov,

Giovannini &
Shaposhnikov
(1998

¥ If ∆µ is a function of t only Maxwell equations have an
exponentially growing solution for one of the two circular
polarizations ⇒ helical magnetic fields

Oleg Ruchayskiy S TERILE NEUTRINOS AS DARK MATTER 22



CMF instability in the νMSM

¥ At T ≥ T+ lepton asymmetry in the left neutrino + left-electron
sector ⇒ ∆µ between left and right electrons appears. . .

¥ . . . and instability quickly develops: B ∝ eλk(t) with

λmax =

(

αµ̄/T

2π

)2
η(T )

σ/T
≈ 5

(

µ̄/T

10−4

)2
100 GeV

T

¥ . . . generating maximally helical magnetic fields . . .

¥ . . . with the total energy

ρB

T 4
=

( µ̄

T

)3 π3/2

λ
1/2
max

eλmax/4

¥ . . . in the wide range of length scales
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Magnetic fields in the νMSM

¥ Magnetic fields, generated in the νMSM below 100 GeV are:

– Maximally helical (sign of helicity determined by the sign of baryon
asymmetry)

– Energetic (magnetic energy density can be ∼ total radiation density)

– The generation occurs on subhorizon scales, but modes up to
10−4 of the horizon (at T ∼ 10 GeV) can be generated)

¥ Their survival until today is a matter of complicated magneto-
hydrodynamical evolution

The leptogenesis in the νMSM thus leads to the
baryogenesis and generation of potentially observable
cosmological magnetic fields
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Evidence for magnetic fields in voids?

Our very preliminary estimates show that the fields with B ∼ 10−16− Banerjee &
Jedamzik
(2004)

Jedamzik &
Sigl (2010)

Boyarsky, O.R.
in progress

10−13 G and correlation scale 1 pc − 1 kpc can survive in the νMSM

Neronov &
Vovk, Science
(2010);

Dolag et al.
(2010);

Tavecchio et
al. (2011)
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Magnetic fields and chiral asymmetry

50 − 10 GeV 500 − 100 MeV100 GeV T+ T−

asymmetryGenerationof lepton Leptonasymmetry+magneti
 �elds
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Magnetic fields and chiral asymmetry

¥ At T = T+ ∼ O(1) GeV sterile neutrino enter equilibrium with
primordial plasma and the source of lepton asymmetry disappears

¥ The presence of helical magnetic fields re- generates lepton
asymmetry in plasma

∂B

∂t
=

1

σ
∇2B +

α∆µ

σ
curl B

∂∆µ

∂t
∝

1

α

B × curlB

σ
−

α∆µB2

σ
− ∆µΓflip

¥ Chemical potential settles at the level

∆µ ≈
B × curlB

B2 + σΓflip

¥ Creates negative feedback loop – opposes magnetic diffusion

Oleg Ruchayskiy S TERILE NEUTRINOS AS DARK MATTER 27



Chemical potential/helicity evolution
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of magnetic diffusion
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Chemical potential/helicity evolution

High temp
50 − 10 GeV 500 − 100 MeV 1/T

1

100 GeV T+ T−

SphaleronsasymmetryGenerationof leptonGenerationasymmetryof baryon
Sterile neutrino intera
tion: ΓN(T )

H(T )

Dark matterprodu
tionmagneti
 �eldsLeptonasymmetry+
¥ Chemical potential is generated from helical magnetic fields and

survives till temperatures O(100) MeV

¥ Dissipation due to magnetic diffusion is much slower than
exponential ⇒ Helicity and magnetic energy survive for longer.
The magnetic energy/helicity spectrum reddens

¥ This whole process stops when chirality flipping reactions
become too fast (as compared to magnetic energy density)
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Properties of sterile neutrino DM

¥ The third sterile neutrino is a dark matter particle in the νMSM
Tremaine &
Gunn (1979)

Boyarksy, O.R.
et al. (2008)

¥ Mass can be anything higher than ∼ 300 eV

¥ Can decay into the SM particles (with the lifetime at least 1026 sec)

¥ Sterile neutrino DM never been in thermal equilibrium in the early
Universe (Has a non-universal non-thermal spectrum of primordial velocities)

¥ Production sensitive to the presence of lepton asymmetry in
plasma

¥ Modifies formation of structures at sub-Mpc scales (warm dark matter)
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Lifetime of sterile neutrino DM candidate

¥ Dominant decay channel for sterile neutrino (for Ms < 1 MeV) is
N → 3ν. Wolfenshtein

Pal (1982)

Barger Phillips
Sarkar (1995)

¥ Life-time τ = 5 × 1026sec ×
(

keV
Ms

)5 (

10−8

θ2

)2

¥ Subdominant radiative decay channel

– Photon energy: Eγ = Ms
2

– Radiative decay width:

Γrad =
9 αEM G2

F

256 · 4π4
sin2(2θ)M5

s

νNs

e± ν

W∓

γ
W∓

Dolgov
Hansen (2000)

Abazajian
Fuller Tucker
(2001)

Boyarsky, O.R.
et al.
(2006-2009)

¥ Sterile neutrino DM is not completely dark . Its decay signal can
be searched for in the spectra of astrophysical objects.
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Decay of sterile neutrino DM

¥ DM may be decaying with a cosmologically long life-time (age of
the Universe or even longer). Can we detect such decay?

¥ Yes! if you multiply a small number (probability of decay) with a large
number (typical amount of DM particles in a galaxy ∼ 1070–10100)

Signal ∝
∫

line of sight

ρDM(r)dl

Expected signal from the galaxy at a particular energy
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Decay of sterile neutrino DM

¥ DM may be decaying with a cosmologically long life-time (age of
the Universe or even longer). Can we detect such decay?

¥ Yes! if you multiply a small number (probability of decay) with a large
number (typical amount of DM particles in a galaxy ∼ 1070–10100)

Expected signal from a galaxy at a particular energy (simulation from B. Moore)
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Restrictions on life-time of decaying DM
MW (HEAO-1)
Boyarsky, O.R.
et al. 2005

Coma and
Virgo clusters
Boyarsky, O.R.
et al.

Bullet cluster
Boyarsky, O.R.
et al. 2006

LMC+MW(XMM)
Boyarsky, O.R.
et al. 2006

MW Riemer-
Sørensen et
al.; Abazajian
et al.

MW (XMM)
Boyarsky, O.R.
et al. 2007

M31 Watson
et al. 2006;
Boyarsky et al.
2007
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Results of almost 20 published works.
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Production through mixing

ν ν̄

Z0

Ns

e+e−

+

q q′

e∓

W±

Nsν̄

+ · · ·

¥ Sterile neutrinos have non-equilibrium spectrum of primordial
velocities , roughly proportional to the spectrum of active neutrinos

fs(p) ∝
θ2

exp( p
Tν(t)) + 1

¥ Production is sharply peaked at

Tmax ≃ 130

(

Ms

keV

)1/3

MeV
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Resonant production

High temp
50 − 10 GeV 500 − 100 MeV 1/T

1

100 GeV T+ T−

SphaleronsasymmetryGenerationof leptonGenerationasymmetryof baryon
Sterile neutrino intera
tion: ΓN(T )

H(T )

Dark matterprodu
tionmagneti
 �eldsLeptonasymmetry+
¥ The lepton asymmetry gets carried over to by magnetic fields

¥ The presence of lepton asymmetry in primordial plasma at T ∼
O(100) MeV makes active-sterile mixing much more effective – Shi Fuller’98

Laine,
Shaposhnikov’08

resonant production of sterile neutrino dark matter
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RP sterile neutrino spectra

Laine,
Shaposhnikov’08;
Boyarsky,
O.R.,
Shaposhnikov’09

In the minimal model explaining neutrino oscillations and dark matter
(3 sterile neutrinos and nothing more), sterile neutrino DM has
spectrum with two components :

10
-5

10
-4

10
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10
-2

 0  1  2  3  4  5  6  7

q
2
 f

(q
)

q = p/T

Non-resonant
component

Resonant
component

M1 = 3 keV

L6 = 10
L6 = 25
L6 = 16

¥ Maximal amount of DM
produced resonantly:

ΩRPh2 ∝ MDM ×
nν − nν̄

nν + nν̄

¥ Colder (resonant )
component with 〈p〉 ≪ Tν

¥ Warmer (non-resonant )
component with 〈p〉 ∼
3Tν
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Free-streaming

¥ Sterile neutrino DM is produced at temperatures T ∼ 100 MeV (for
masses ∼ keV – created relativistic ⇒ warm dark matter

¥ Relativistic particles free stream out of
overdense regions and smooth primordial
inhomogeneities λco

FS =

∫ t

0

v(t′)dt′

a(t′)

¥ Power spectrum of primordial
density perturbations is
suppressed at scales below
free-streaming horizon

¥ Scales of interest:

λco
FS ∼ 1 Mpc

(

keV
Msterile

)

Overdensity
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Suppression of power spectrum

-30

-25

-20

-15

-10

-5

 0

 5

-3 -2 -1  0  1  2  3

L
o
g
1
0
 
|

δ k
|
2

Log10[k]

νMSM sterile neutrino
Warm thermal relic
CDM

Oleg Ruchayskiy S TERILE NEUTRINOS AS DARK MATTER 39



How to probe primordial velocities?

¥ Primordial velocities affect :

– Power-spectrum of density fluctuations (suppress normalization
at large scale)

– Halo mass function (number of halos of small mass decreases)
– Dark matter density profiles in individual objects

¥ Scales probed by CMB and LSS experiments (linear regime of
perturbation growth)

k ≃ ℓ ×
H0

2
=

ℓ

6000

h

Mpc

¥ Is sensitive up to scales k . 0.1 h/ Mpc

¥ Smaller scales? Non-linear stage of structure formation
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How to measure power spectrum
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Lyman-α forest and cosmic web

Neutral hydrogen in intergalactic medium is a tracer of overall matter density. Scales
0.3h/Mpc . k . 3h/Mpc
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Free-streaming of sterile neutrino DM
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Power spectrum for sterile neutrinos
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Lyman-α bounds for sterile neutrinos

¥ Revised version of these bounds in CDM+WDM (mixed, CWDM)
models demonstrates that Boyarsky,

O.R.,
Lesgourgues,
Viel JCAP &
PRL (2009)

– The primordial spectra are not described by free-streaming
– There exist viable models with the masses as low as 2 keV
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Window of parameters of sterile neutrino DM
Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08
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Window of parameters of sterile neutrino DM
Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08

O.R. and
many others
2005-2010
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Window of parameters of sterile neutrino DM
Asaka, Laine,
Shaposhnikov’06

Laine,
Shaposhnikov’08

O.R. and
many others
2005-2010
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Sterile neutrino DM in the νMSM
Boyarsky,
O.R.,
Lesgourgues,
Viel
[0812.3256]

Boyarsky,
O.R.,
Shaposhnikov
[0901.0011]
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(Sub)halo mass function

Number of small dark matter halos
((Sub)Halo mass function)
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CDM scale-free structures

¥ CDM structures form in a scale-
free manner

dn

dM
∝ M−2

¥ Bolshoi + Via Lactea-II
simulations

¥ Subhlo mass function
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CDM scale-free structures
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¥ CDM structures form in a scale-
free manner

dn

dM
∝ M−α, α ≈ 2

¥ Via Lactea-II simulations

¥ Subhlo mass function

¥ Sub-subhalo mass function is
the same as for subhalos
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Halo substructure in "cold" DM universe

45 × 10
3 substructures (Aquarius

simulation)

∼ 30 observed substructures within our
Galaxy. M. Geha 2010

Is small number of observed substructures due to dark matter
free-streaming? Moore et al. (1999), Klypin et al. (1999) and many others
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Mass vs. luminosity function

There can be a large bias between satellite luminosity function and Bullock et al.
(2000);

Benson et al.
(2002)

satellite mass function in ΛCDM?

Macci ò & Fontanot’09

Suppression of number of structures in
WDM Universe

Koposov et al.’09
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Sterile neutrino DM in the νMSM
Boyarsky,
O.R.,
Lesgourgues,
Viel
[0812.3256]

Boyarsky,
O.R.,
Shaposhnikov
[0901.0011]
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Halo substructure with sterile neutrino DM

Lovell, Frenk,
Eke, . . . ,
Boyarsky,O.R.
1104.2929
[astro-ph.CO]
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Halo substructure with CDM

Aq-A2 halo
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Halo substructure with sterile neutrino DM

Aq-A-2 CDM halo
Aq-AW-2 halo made of sterile neutrino DM (Gao,

Theuns, Frenk, O.R., . . . )

¥ Simulated sterile neutrino DM halo (right) is fully compatible with
the Lyman-α forest data but provides a structure of Milky way-size
halo different from CDM
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Abundance of large satellites

Strigari, Frenk,
White (2011)

Lovell, Frenk,
Eke, . . . ,
Boyarsky,O.R.
1104.2929
[astro-ph.CO]
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Another overabundance problem

Observed number of
isolated halos with
circular velocities
below ∼ 100 km/sec
is smaller than
predicted by
ΛCDM simulations,
assuming linear bias

Trujillo-
Gomez,
Klypin,
Primack et al.
2010-2011
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ALFALFA Velocity width function vs. CDM

Papastergis+
[1106.0710]

ALFALFA (HI) survey. Deviations from ΛCDM predictions for vrot . 100 km/sec
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Velocity width function vs. WDM
Papastergis+
[1106.0710]

ALFALFA (HI) survey. Deviations from ΛCDM predictions for vrot . 100 km/sec
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Future?
2
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Improved bounds on DM decay
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BBN constraints
Dolgov,
Semikoz et al.
(2000–2001);

O.R., Ivashko
et al. (2011)
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Probing other sterile neutrinos
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Conclusion

¥ νMSM demonstrates that the BSM phenomena can find their
explanation without introduction of new energy scale

¥ Neutrino Minimal Standard Model (νMSM) provides resolution of all
major observational BSM problems and gives a complete history
of the Universe from inflationary era till today

¥ Sterile neutrino dark matter can leave its imprints on formation of
structures and can be detected via its monochromatic decays to
photons

¥ Heavier sterile neutrino particles can be probed with this generation
of intensity frontier experiments
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Thank you for your attention!
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Thermal relics

¥ The simplest WDM model – thermal relics . Particles that freeze-
out relativistic at temperature Td Bode et al.

(2001)

f(v) =
1

exp
{

MDMv
Td(t)

}

+ 1

¥ Decoupling temperature determines abundance:

ΩDMh2 =

(

Td

Tν

)3
MDM

94 eV
where

(

Td

Tν

)3

=
10.75

g∗(Td)

¥ The suppression of the power-spectrum is strong Viel et al.
(2005)

T (k) ≡

√

P (k)

PΛCDM(k)
∝

(

kc

k

)10

kc ∼ 20
h

Mpc
MDM

keV
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Lyman-α forest flux power spectrum
Seljak et al.
’06

Measured flux power spectrum is compared against CDM and non-
CDM models
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Ly-α and thermal relics
Boyarsky,
Lesgourgues,
O.R., Viel
[0812.0010]
(JCAP 2009)

Also Viel et al.
2005-2007;

Seljak et al.
(2006)
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These bounds are for thermal relics only!
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Lyman-α forest and warm DM

¥ Previous works put bounds on free-streaming λFS . 150 kpc Viel et al.
2005-2007;
Seljak et
al.(2006)

(“WDM mass” > 2.3 keV)

¥ The simplest WDM with such a free-streaming would not modify
visible substructures: Maccio &

Fontanot
(2009);

Polisensky &
Ricotti (2010)

¥ Thermal relic with exponential cut-off ∼ 1 Mpc would erase too
many substructures . Anything “colder” would produce enough
structures to explain observed Milky Way structures
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CMF instability in the νMSM

The longest wave-length that has experienced instability at
temperature T is

kmin = H(T )
σ

αµ̄
∼

H(T )

α2 log(1/α)µ̄(T )
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Energy in the magnetic field
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Checking DM origin of a line

¥ Dark Matter Search Using Chandra Observations of Willman 1, and Loewenstein &
Kusenko
(Dec’2009)

a Spectral Feature Consistent with a Decay Line of a 5 keV Sterile
Neutrino
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¥ Can the excess in the FeXXVI Ly gamma line from the Galactic Prokhorov &
Silk (Jan’2010)Center provide evidence for 17 keV sterile neutrinos?
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Do we see this line anywhere else?
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Objects with comparable
expected signal for which
archival data is available

¥ Fornax dSph (XMM)
SF = 54.4M⊙pc−2

¥ Sculptor dSph
(Chandra)
SSc = 140M⊙ pc−2

¥ Andromeda galaxy
(M31) :
SM31 ∼ 100− 600M⊙/pc2

Do we see this 2.5 keV line?
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DM in Andromeda galaxy (2008)
Boyarsky,
O.R. et al.
MNRAS’08
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DM in Andromeda galaxy (2010)
Boyarsky,
O.R. et al.
MNRAS’08

Chemin et al.
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Corbelli et al.
0912.4133

Kusenko &
Loewenstein
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Checking for DM line in M31
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