Developments on VMM3a/SRS for the RD51 beam telescope

Lucian Scharenberg

CERN, University of Bonn

RD51 Collaboration Meeting 10 February 2022

SPONSORED BY THE

and Research

Outline

- 1. Experimental set-ups
- 2. Electronics and available hardware
- 3. Technical scope
- 4. Physics scope

Experimental set-up (July 2021)

- 3 COMPASS-like triple-GEM trackers
- 1 COMPASS-like DUT

- 10 x 10 cm² active area
- x-y-strip readout (256 + 256 strips with 400 µm pitch)
- 3 scintillator/PMTs to a NIM logic

Experimental set-up (October 2021)

- 3 COMPASS-like triple-GEM trackers
- 2 COMPASS-like DUTs

- 10 x 10 cm² active area
- x-y-strip readout (256 + 256 strips with 400 µm pitch)
- 3 scintillators/PMTs to a NIM logic

Electronics

- July 2021: largest minimal system (only for the 4 GEM detectors)
 - 1 Powercrate 2k
 - 2 FEC+DVMM
 - 16 RD51 VMM hybrids (2048 channels)
 - 2 PMX
- October 2021: rate-optimised system (for the 5 GEM detectors)
 - 3 Powercrate 2k
 - 5 FEC+DVMM (one detector per FEC)
 - 20 RD51 VMM hybrids (2560 channels)
 - All power over HDMI

Available hardware

• Detectors

- 3 triple-GEM detectors for tracking
- 1 triple-GEM DUT as reference
- Up to 3 other DUTs; depends however on the DUT's size and if enough electronics is available
- Electronics (only from RD51; at the moment distributed between various institutes)
 - During October 2021: lots of hardware from ESS was used by RD51
 - 4 to 5 FECs
 - 3 DVMMs (2 with PMX/power-over-HDMI support, 1 prototype for external power)
 - up to 24 hybrids (some of which are only partially working)

Powering and grounding

- More hybrids = more power consumption
- Power distribution from the SRS crate -> PMX from Hans Muller
- Ground return towards the SRS crate -> grounding brade fanout from Hans Muller

https://indico.cern.ch/event/1071632/contributions/4616924/

System stability and clock distribution

 Multi-FEC system => common clock to all FECs via CTF card

https://indico.cern.ch/event/1071632/contributions/4616924/

System stability and clock distribution

- Multi-FEC system => common clock to all FECs via CTF card
- Observation during July beam: instable ACQ start
 - => All hybrids can be configured an receive a clock
 - => Not all hybrids send data once the ACQ is turned on
 - => Random, which hybrid does send data and which one does not
 - => The ones that send data are stable
- Possible solution found during October beam:
 - Jitter on CTF clock
 - Add PLL jitter cleaner to CTF

Clock without PLL

https://indico.cern.ch/event/1071632/contributions/4616924

Technical scope Plans for the future

System stability (can/should be done before the next beam in the lab)

- Validation of PLL jitter cleaner in the lab
- Test also the AIDA TLU (Timing/Trigger Logic Unit) as clock distribution
- New firmware under development, which allows to powercycle specific hybrids instead of physically rebooting the entire system

Hybrid cooling

- During beam some hybrids reached temperatures of 60 °C
- In the lab: 50 to 55 °C
- With active cooling: ~35 °C
- Investigate the noise on the signal

Software

- Cluster reconstruction, also for multiple detectors available
- VMM is self-triggered => new event-building needed => written by Jona Bortfeldt
- These events can be processed by the same tracking software as the one used by Picosec
- Analysis and optimisation of tracking software for VMM3a data still ongoing
- More tools for 'on-the-fly' analysis during beam needed
- See discussion at the end of this session

New technologies: µRWELL prototype

- Goal of the next test beam campaigns: test µRWELL prototype for the beam telescope
- For previous results with APV25/SRS see: <u>https://indico.cern.ch/event/1040996/contributions/4404219/</u>
- Lab, modelling, beam activities: study prototype, get insight on the final design for the beam telescope
 - Rate-capability
 - 2D readout and charge sharing => dynamic range/adjustable electronics gain of the VMM is useful for non-equal charge sharing
 A 2-D μRWELL PCB with 15cm×15cm a-C DLC was designed and fabricated. The DLC was made in China

Yi Zhou, Xu Wang et al. (USTC) Eraldo Oliveri µRWELL PCB

- Sensitive area: 10cm × 10cm divided into 4 sectors
- Well pitch: 140 μm
- <u>Pre_preg</u> (50 μm) isolate the DLC electrode from readout strip
- 2-D readout strip
- Pitch: 400 μm
- Top layer: 80 μm
- Bottom layer: 350 μm
- Insulate thickness: 50 μm
- Readout strip channel: 1024

Schematic of <u>µRWELL</u> PCB

All the readout strips are connected to 4 HIROSE (for laboratory test) / PANASONIC (for beam test) connectors.

Yi Zhou, Xu Wang et al. (USTC) Djunes Janssens

10 Feb 2022

New technologies: small pitch GEM

• Use small-pitch GEMs to improve the spatial resolution of a triple-GEM detector

90µm pitch 50µm Kapton 60µm holes

Florian Brunbauer

60µm pitch 25µm Kapton

New technologies: small pitch GEM

- Use small-pitch GEMs to improve the spatial resolution of a triple-GEM detector
- Better sampling/charge collection of primary charge
- Two types of small pitch GEMs:
 - 90 μm hole pitch, 50 μm polyimide, 5 μm copper
 - 60 µm hole pitch, 25 µm polyimide, 5 µm copper
- Three configurations during the October beam

Configuration	GEM1	GEM2	GEM3	
А	90/50 µm	140/50 µm	140/50 µm	
В	60/25 µm	140/50 µm	140/50 µm	
С	90/50 µm	90/50 µm	90/50 µm	

Physics scope

Spatial resolution: past and future beams + ongoing data analysis

- Investigate the effect of the small pitch GEM
- Study the effect of the VMM's neighbouring-logic
 - => recover charge below threshold in a self-triggered readout system
 - => more charge information should improve the position reconstruction
- Study alternative position reconstruction methods (instead of centre-of-gravity)

Physics scope

Spatial resolution: past and future beams + ongoing data analysis

- Dependence on the threshold level, detector gain
 - COMPASS-GEM divider currents: (660) 700 to 735 μA
 - Gain range: 1.5 to 30.0 x 10³
 - Threshold levels: 40 to 100 mV above the baseline
 - Threshold in electrons: 27 to 69 x 10³ electrons (at 9 mV/fC electronics gain)
 - => Improve S/N and signal/threshold for the next beam
- With small-pitch GEM detector: CAEN HiVolta (DT1415ET) power supply
 - Dependence on the different fields (drift, transfer, induction)
 - Drift scan from 60 to 5600 V/cm
 - Induction/transfer scans from 250 to 5000 V/cm
 - Gain scans for each GEM individually
 - Settings optimised for electron transparency with lower total divider voltage (<u>https://hdl.handle.net/20.500.11811/8516</u>)

Settings	Induction	GEM3	Transfer2	GEM2	Transfer1	GEM1	Drift
COMPASS	730 V 3650 V/cm	328.5 V	730 V 3650 V/cm	365 V	730 V 3650 V/cm	401.5 V	730 V 2433 V/cm
Optimised	730 V 3650 V/cm	313.7 V	308.8 V 1544 V/cm	358.6 V	343 V 1715 V/cm	396.8 V	730 V 2433 V/cm

Physics scope Time resolution

- Time resolution of the electronics: 1-2 ns if correctly calibrated
- All detectors can be kept in the same readout scheme
- Other detector types can be added
 - Scintillators + PMTs
 - NIM coincidence unit
- Time resolution of scintillator system (non-calibrated electronics) ~ 4 ns
- Scintillator + triple-GEM: ~ 12 ns
- Triple-GEM: ~ 11 ns
 - Ar/CO2 (70/30 %)
 - 3 mm drift + 2 mm induction gap
 - Same as in doi:10.1016/j.nima.2004.07.146 for COMPASS GEMs

NIM-logic to VMM adapter

Analysis done by our summer student Daniel Sorvisto

Summary

- Last year: commissioned the electronics for the new RD51 telescope
 - New powering scheme (HDMI and/or PMX)
 - Improved grounding
 - Improved clock distribution and thus system stability
- Started with physics measurements
 - Improving spatial resolution with electronics features (neighbouring-logic) and position reconstruction algorithm
 - Testing small pitch GEM for improved spatial resolution
 - Measure the time resolution of the DUTs
- This year:
 - Continue with the physics scope from last year
 - Validate the improvements from last year
 - Test the μ RWELL
 - Get the new beam telescope ready for everybody

for your attention!