

# A virtual tour of the antimatter factory at CERN

Speaker: *Sonia Natale* Guide: *Mario Campanelli* 

Jan 14th 2022

## What are we going to visit today ?







## **Paul Dirac**

The quantum theory of the electron, January 1928

**Nobel Prize in Physics, 1933** 









positron

#### antiproton

#### antineutron









## Where has all the antimatter gone?

## Lost and Found



## How do we address this question at CERN?



## How do we address this question at CERN?





#### How do we address this question at CERN?





#### The CERN accelerator complex Complexe des accélérateurs du CERN



LHC - Large Hadron Collider // SPS - Super Proton Synchrotron // PS - Proton Synchrotron // AD - Antiproton Decelerator // CLEAR - CERN Linear Electron Accelerator for Research // AWAKE - Advanced WAKefield Experiment // ISOLDE - Isotope Separator OnLine // REX/HIE - Radioactive EXperiment/High Intensity and Energy ISOLDE // LEIR - Low Energy Ion Ring // LINAC - LINear ACcelerator // n-ToF - Neutrons Time Of Flight // HiRadMat - High-Radiation to Materials // CHARM - Cern High energy AcceleRator Mixed field facility // IRRAD - proton IRRADiation facility // GIF++ - Gamma Irradiation Facility // CENF - CErn Neutrino platForm







## **Gbar Experiment**

- The GBAR experiment uses antiprotons supplied by the <u>ELENA deceleration ring</u> and positrons produced by a small <u>linear</u> accelerator to make antihydrogen ions, consisting of one antiproton and two positrons.
- Next, after trapping the antihydrogen ions and chilling them to an ultralow temperature (about 10 microkelvin), it uses laser light to strip them of one positron, turning them into neutral antiatoms.
- At this point, the neutral antiatoms will be released from the trap and allowed to fall from a height of 20 centimetres, during which the researchers will monitor their behaviour.



## ALPHA and ALPHA-g Experiment

- ALPHA-g is very similar to the <u>ALPHA experiment</u>, which makes neutral antihydrogen atoms by taking antiprotons from the <u>Antiproton</u> <u>Decelerator</u> (AD) and binding them with positrons from a sodium-22 source.
- ALPHA then confines the resulting neutral antihydrogen atoms in a magnetic trap and shines laser light or microwaves onto them to measure their internal structure.
- The ALPHA-g experiment has the same type of apparatus for making and trapping antiatoms, except that it is oriented vertically. With this vertical set-up, researchers can precisely measure the vertical positions at which the antihydrogen atoms annihilate with normal matter once they switch off the trap's magnetic field and the atoms are under the sole influence of gravity. The values of these positions allows them to measure the effect of gravity on the antiatoms.











## Experiment

- A system of gratings in the deflectometer splits the antihydrogen beam into parallel rays, forming a periodic pattern.
- From this pattern, the physicists can measure how much the antihydrogen beam drops during its horizontal flight.
- Combining this shift with the time each atom takes to fly and fall, the AEgIS team can then determine the strength of the gravitational force between Earth and the antihydrogen atoms.



In 2018, AEgIS demonstrated the <u>first pulsed production of antihydrogen atoms</u>, by interacting pulse-produced positronium (an atom consisting of only an electron and a positron) with cold, trapped antiprotons.













## **Natural antiparticles**

 A person weighting 80 kg produces 180 e<sup>+</sup> per hour from the desintegration of Potassium-40, a natural isotope

A banana produces 10 e<sup>+</sup> per second











## **Practical use...**

1g of antimatter contains 90 TJ of energy (~21 kT of TNT) (enough to power a car 1000 times around the world) but producing 1g of antimatter at CERN at current production rate would take1 billion years would cost 2 000 000 000 000 000 €



#### **PET (Positron Emission Tomography)**











## **Additional slides**



## **The experiments**

|             | ALPHA                                                              | ATRAP                                                              | ASACUSA                                                                                | BASE                                                          | AEGIS                                                   | GBAR                                                    |
|-------------|--------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------|
| Approved    | 2005                                                               | 1997                                                               | 1997                                                                                   | 2013                                                          | 2008                                                    | 2012                                                    |
| Data Taking | 2006                                                               | 2002                                                               | 2002                                                                                   | 2014                                                          | Soon                                                    | Soon                                                    |
| Countries   | 8                                                                  | 4                                                                  | 8                                                                                      | 3                                                             | 11                                                      | 9                                                       |
| Institutes  | 16                                                                 | 6                                                                  | 19                                                                                     | 7                                                             | 23                                                      | 16                                                      |
| Researchers | 57                                                                 | 31                                                                 | 51                                                                                     | 41                                                            | 113                                                     | 87                                                      |
| Main goals  | Compare<br>hydrogen and<br>antohydrogen<br>( <i>spectroscopy</i> ) | Compare<br>hydrogen and<br>antohydrogen<br>( <i>spectroscopy</i> ) | Compare the<br><i>hyperfine</i><br><i>structure</i> of<br>hydrogen and<br>antihydrogen | Compare the <i>magnetic moments</i> of matter and antimatter. | Study effects<br>of Earth's<br>gravity on<br>antimatter | Study effects<br>of Earth's<br>gravity on<br>antimatter |
| Highlight   | Jun 2011:<br>trapped<br>antiprotons for<br>16 minutes              | Mar 2013:<br>magnetic<br>moment<br>measurement                     | Nov 2016:<br>measure the<br>mass of<br>antiproton                                      | Jun 2014:<br>first<br>observations                            |                                                         |                                                         |









