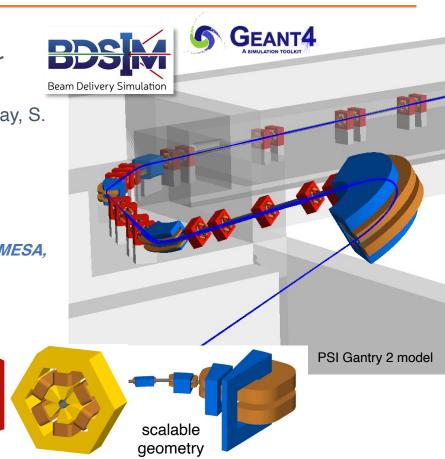
BDSIM Studies for the Forward Physics Facility

ROYAL HOLLOWAY UNIVERSITY

Beam Delivery Simulation

Laurie Nevay, Stewart Boogert, Stephen Gibson, Helena Lefebvre, thanks to B. Lindstrom BE-ABP-NDC 31st January 2022

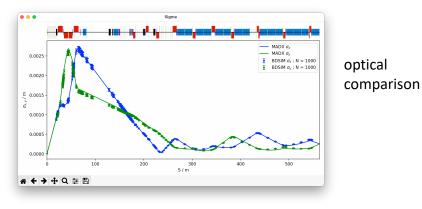


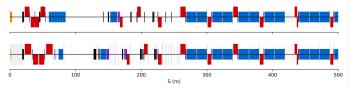

Beam Delivery Simulation (BDSIM)

- L. Nevay, W. Shields, S. Boogert
- Started at Royal Holloway for Linear Collider muon backgrounds
 - redeveloped and modernised since 2014 by L. Nevay, S. Boogert, W. Shields and RHUL group
- Automatic Geant4 models of accelerators
- Applied to many experiments and machines
 - ILC / CLIC, AWAKE, XFEL undulators, LHC collimation, Laserwires, ATLAS non-collision backgrounds, MAGIX at MESA, and recently FASER, KLEVER, NA62 (PBC)

2

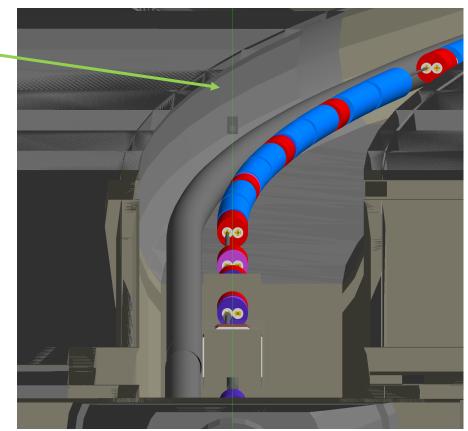
- Also for medical therapy systems
 - including radiobiological research facilities e.g. LhARA





HL-LHC Model

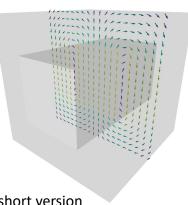
- New model for HL-LHC
- HL-LHC Optics V1.5
- Updated aperture model



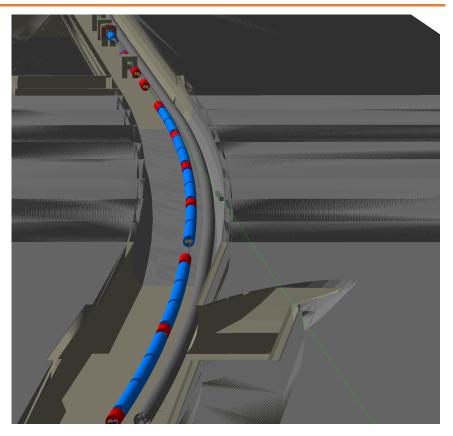
Layout: LHC 2018 (top) vs HL-LHC V1.5 (bottom)

LHC vs HL-LHC machine layout along S

line of sight

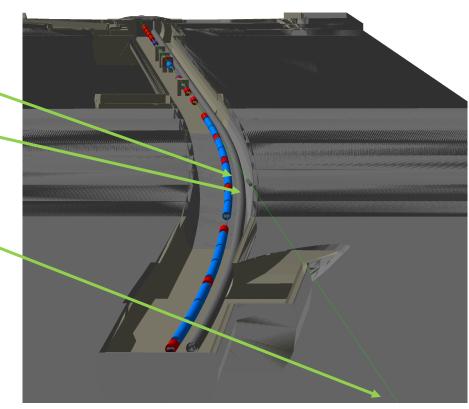

beam line view from IP1 towards FPF

3

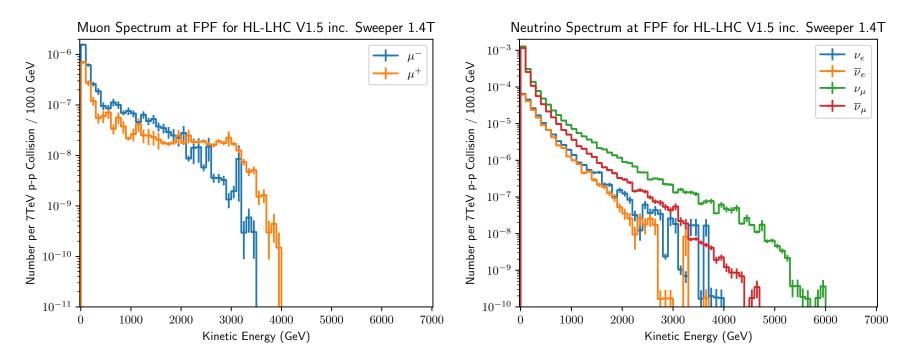


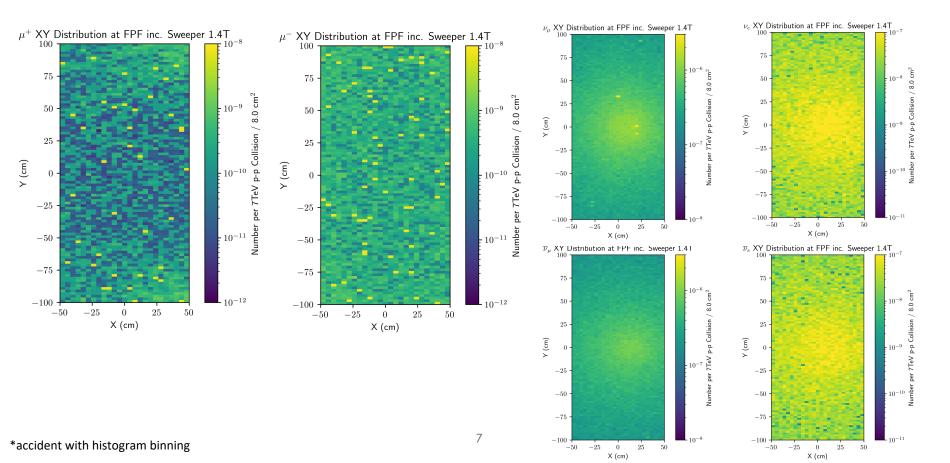
Sweeper Magnet Model

- Sweeper magnet model included
- Based on field map from FLUKA group via Jamie
- Peak field of 1.4T
 - but can be scaled in future _
- Can be rotated and moved

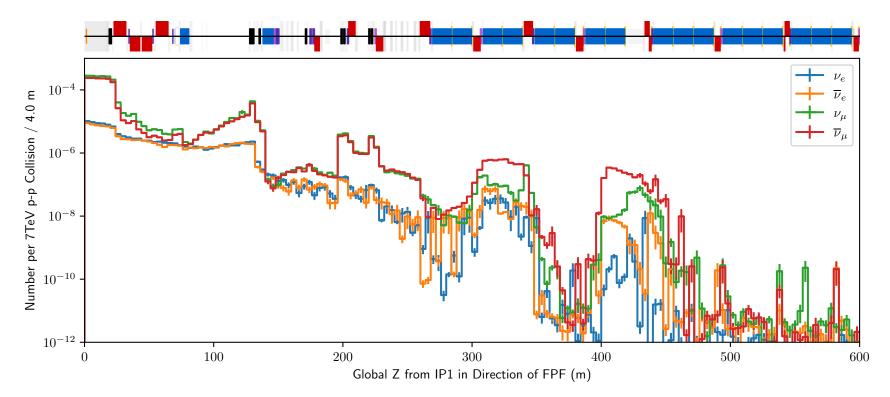

^	1	~	-	-	-	-	~	1	+	+	/	-	-		+	+	~	1	1
	1	1	-	-	-	-	1	×	t.	t	1	1	-		-	*	\mathbf{x}	\mathbf{x}	X
	1	1	~	-	-	-	\mathbf{x}	X	-t-	ł.	1	1	-			~	\mathbf{x}	X	A
	1	1	1	~	-	~	\mathbf{x}	X	-t-	ł.	1	1	-	-	-	\mathbf{x}	X	X	ł
	1	¥	1	1	-	X	X	t	t.	ł.	t	1	1	-	1	X	¥	¥.	ł
	1	1	1	1	1	+	t.	t.	-t-	ł	-t-	t.	ł.	1	X	X	¥	4	4
	+	Ŧ	Ŧ	Ŧ	~	t	ł	t.	t.	t	t	+	t	1	÷.	+	ł	+	ł
	÷.	ŧ	ŧ	Ŧ	X	t	t	t.	t.	ł	ł	t	ł	A	÷.	ł	+	+	ł
	÷.	÷	÷	÷	-t-	÷.	-t-	t.	-t-	ł.	t.	-t-	÷.	-t-	÷	÷	÷	÷	ŧ
	÷	÷	÷	÷	t.	t.	-t-	t.	-t-	ł.	-t	t.	÷.	÷.	÷	÷	÷	÷	÷
	÷	+	÷	÷	-t-	ł.	-t-	t.	-t-	ł	-t-	t.	+	-t-	÷	÷	÷	÷	÷
	÷	+	+	Ŧ	-t-	ł.	-t-	t.	-t-	Ł	-t-	t.	ł	ł.	÷.	÷.	÷	÷	÷
	÷.	Ŧ	÷	÷.	1	÷.	+	t.	-t-	Ł	ł.	t.	÷.	X	Ŧ	÷	Ŧ	+	ŧ
	÷.	ł.	ł	ł	1	ł	ł	t.	÷.	ł.	ł	t.	t	1	4	Ŧ	Ŧ	+	ŧ
	+	+	ł	X	1	ł	t	t	t.	t	t	t	1	1	1	1	+	+	ŧ
	¥	¥	X	×		1	1	1	t.	t	t	X	۲	-	1	1	1	+	+
	A	X	1	*		-	1	1	t.	t.	۲	\mathbf{x}	-	+	*	1	1	1	ŧ
	X	×	*	-	-+	-	1	1	t.	t	۲	1	-	-	-	~	1	1	1
	\mathbf{x}	1	~	-	-+	-	1	1	t.	t	X	~	-	-	-	-	1	1	1
	1	~	-	-		-	1	1	+	+	1	~	-	-	-	-	~	1	1

geometry composited using pyg4ometry

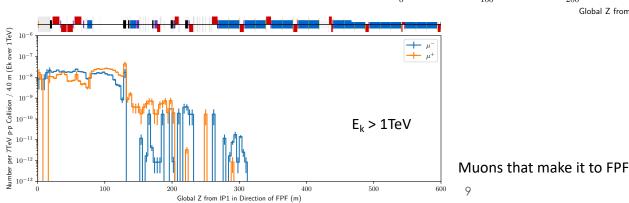

- 3 Sample planes to record distribution for simulation
- 1x start of sweeper (40 x 40cm)
- 1x end of sweeper (40 x 40cm)
- 1x at FPF Z = 617m
- Sample of 130M events
 - Geant4 V10.7.p03
- CRMC using SIBYLL
- Decay cross-section biasing for pions and kaons throughout

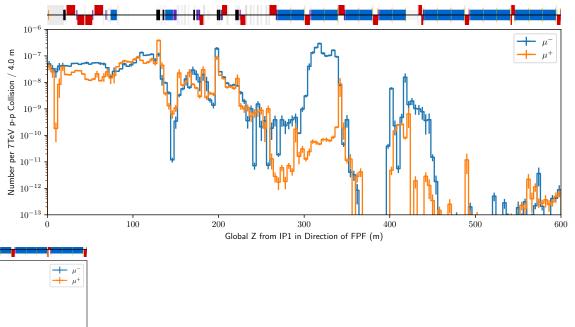

Spectra

Spectra at FPF per p-p collision integrated over 2 x 2m²



XY Distribution at FPF


Origins of Neutrinos Reaching the FPF



Note, not flux at that position - number originating from that location that reach FPF

- Muons from throughout
- Some peaks related to dispersion in the accelerator
- More asymmetry than previous studies
 - suspect effect of sweeper
- Some high energy muons still originate from close to IP

Outlook

- HL-LHC BDSIM model prepared
- Initial MC sample generated
 - available in ROOT files for analysis
 - 130M events in ~60k cpu hours (~0.6s / event)
- Muon splitting being introduced to improve efficiency
 - improved efficiency will enable more studies
- Analysis on effect of sweeper ongoing
 - initially seems to have more effect on mu+
- Analysis will reveal optimal length, strength and area of magnet for best way to reduce the muon flux
 - although not too much variability here
- Geometry improvements ongoing
 - some minor aperture constrictions from LHC model
- Usual normalisations to Hz/cm² ongoing