FLArE

Jianming Bian (University of California, Irvine) Milind Diwan (Brookhaven National Lab) 2022 Jan 31

The 4th Forward Physics Facility Meeting

1

Introduction

- FLArE: a noble liquid time projection chamber (TPC) detector to detect very high-energy neutrinos and search for dark matter at LHC@CERN
- A central goal of FLArE is to extend the nascent collider neutrino program into the HL-LHC era. With an active detector mass of 10 tonnes, 10 times bigger than FASERv, and the enhanced luminosity of the HL-LHC relative to Run 3, one can expect 200 times more neutrino events at FLArE than at FASERv.

FLArE's location at the LHC in the proposed Forward Physics Facility (FPF): The FPF will be located 620-680 m west of the ATLAS IP along the line of sight (LOS). Also shown is the location of FASER and FASERv, which are also located along the LOS, but 480 m east of the ATLAS IP

Physics Goals

Neutrino physics

- Measure the flux of tau neutrinos
- Limit the oscillations of tau neutrinos into other neutrinos over the parameter range defined by the energy spectrum and distance
- Determine the cross section of neutrino interactions in the energy range of hundreds of GeV to few TeV
- QCD physics with far forward neutrinos

Dark matter search sector

- Detection of dark sector photon decays in the detector volume
- Detection of light dark matter scattering in detector
- Search for milli-charged dark matter particles

Experimental conditions (without sweeping magnet) Approximate fluxes, rates of backgrounds

- This rate will be lower at 612 m.
- Both charged and neutral hadron interactions present significant background.
- Total neutrino interaction rate normalized to per ton per fb⁻¹
- Observed nu rate: ~45/ton/fb-1 at 480 m

Minimum distance	612 m
Total Lumi/max lumi	3000/fb;5x10 ³⁴ /cm2/sec
Lumi per day	~1 /fb assuming 10 year running
pseudorapidity coverage	>6.4, (~5.4-6.0 for off-axis)
Mu+/Mu- flux > 10 (100) GeV	1.5/0.93 (0.94/0.39) 10 ⁴ /cm ² /fb ⁻¹
track density (from data)	1.7x 10 ⁴ /cm²/fb ⁻¹
max track density per sec (per crossing)	0.85/cm²/sec (2x10 ⁻⁸ /cm2/crossing)
Tracks in detector/1 ms	8.5/m^2/1msec
Neutral hadron flux > 10 GeV (10 ⁻⁴ of muons)	~3 /cm²/fb ⁻¹
Total neutrino rate (all flavors)	~50/ton/fb ⁻¹

2105.06197

PDF uncertainties in theoretical predictions for far-forward tau neutrinos at the LHC

Mary Hall Reno for Weidong Bai, Milind Diwan, Maria Vittoria Garzelli, Yu Seon Jeong, Fnu Karan Kumar, MHR (2021/12/9)

$u_{\tau} + \bar{\nu}_{\tau}$ Events Run 3

$\mathcal{L} = 150 \text{ fb}^{-1}$	ν_{τ}	$\bar{\nu}_{\tau}$	$\nu_{\tau} + \bar{\nu}_{\tau}$		$\nu_{\tau} + \bar{\nu}_{\tau}$	
$(\mu_R, \ \mu_F), \ \langle k_T angle$	$(1, 1) m_{T,2}, 0.7 \text{ GeV}$					
				scale(u/l)	PDF(u/l)	$\sigma_{ m int}$
SND@LHC	2.8	1.3	$4.2^{+3.8}_{-3.3}$	+3.7/-3.1	+0.8/-1.2	± 0.1
$7.2 < \eta_{\nu} < 8.6, 830 \text{ kg}$						
$FASER\nu$	8.2	3.9	$12.1^{+11.6}_{-9.8}$	+11.3/-9.0	+2.8/-3.9	± 0.3
$\eta_{\nu} > 8.9, 1.2 \text{ ton}$						
$(\mu_R, \ \mu_F), \ \langle k_T \rangle$	(1, 2	$) m_T$, 1.2 GeV	(1, 1)	$m_{T,2}, 0.7$ G	${ m GeV}$
PDF	PI	ROSA	FFNS	NNPDF3.1	CT14	ABMP16
SND@LHC	5.1	2.4	7.5	4.0	6.6	5.0
$7.2 < \eta_{\nu} < 8.6, 830 \text{ kg}$						
$FASER\nu$	13.5	6.4	19.9	12.8	23.5	15.6
$\eta_{\nu} > 8.9, 1.2 \text{ ton}$						

$u_{ au} + ar{ u}_{ au}$ Events HL

$\mathcal{L} = 3000 \text{ fb}^{-1}, 1 \text{ m}$	$\nu_{ au}$	$\bar{\nu}_{ au}$	$ u_{ au} + ar{ u}_{ au} $		$\nu_{\tau} + \bar{\nu}_{\tau}$	
$(\mu_R, \ \mu_F), \ \langle k_T angle$	$(1, 1) m_{T,2}, 0.7 \text{ GeV}$					
			\frown	scale (u/l)	PDF (u/l)	$\sigma_{ m int}$
$\eta\gtrsim 6.9$	3260	1515	4775^{+4307}_{-3763}	+4205/-3494	+926/-1391	± 112
$(\mu_R, \ \mu_F), \langle k_T \rangle$	$(1, 2) m_T, 1.2 \text{ GeV}$			$(1, 1) m_{T,2}, 0.7 \text{ GeV}$		
PDF	PROSA FFNS			NNPDF3.1	CT14	ABMP16
$\eta\gtrsim 6.9$	5877	2739	8616	4545	7304	5735

1 m tungsten, namely 60.63 ton

FLArE Detector Preliminary Sketch

Parameters for the FLArE Detector

	Value	Remarks
Detector length	7 m	Not including cryostat
TPC drift length	0.5 m	2 TPC volumes with HV cathode in center
TPC height	1.3 m	
Total LAr mass	~ 16 tonnes	Volume in the cryostat
Total LKr mass	~ 27.5 tonnes	As an option
Fiducial mass LAr/LKr	10/17 tonnes	
Charge readout	wires or pixels	Hybrid approach is possible
Light readout	SiPM array	Needed for neutrino trigger
Background muon rate	$\sim 1/{ m cm}^2/{ m s}$	Maximum luminosity of $5 \times 10^{34} / \text{cm}^2 / \text{s}$
Neutrino event rate	$\sim 50/\text{tonne}/\text{fb}^{-1}$	For all flavors of neutrinos
Cryostat type	Membrane 0.5 m	Thickness of membrane
Heat loss	$\sim 300 \text{ W}$	

Issues to be resolved in design process

We are seeking resources to support design and R&D

Item	Choice	Comments		
Liquid fill	LAr or LKr or keep both options open	If we made the choice for LKr only then detector could be much smaller for same mass.		
Cryostat and TPC dimensions	Keep the total to active volume ratio small (for LKr)	Cryostat, field cage, HV design must be integrated.		
Cathode/anode	Central cathode with two anode planes. (makes two drift volumes)	Doubles channels, but better for HV safety. cathode must be transparent to light		
Photon readout	SiPM's. Cannot use PMTs to keep the unused volume small.	Will need large number of channels.		
Wavelength shifter for scintillation light	LAr: 128 nm, LKr: 150 nm	Will require R&D to understand this issue.		
SiPM density, timing resolution and trigger	This requires detailed simulations and R&D. A minimum density is needed for recognizing contained events versus muons for trigger. Timing resolution is needed to associate with LHC bunch.			
Anode electrode design	Pixels versus wires	Simple wire geometry may not be possible because of straight thru muons. Need Simulation input		
Anode readout pitch	2 or 5 mm (LKr has higher signal)	Depends on kinematic resolution needed and also signal to noise.		

LAr vs. LKr, Milind Diwan, 1/6/2022

Given the high radioactivity in krypton, the LKr option needs further evaluation.

	Liquid Argon	Liquid Krypton
Ζ, Α	18, 39.9	36, 83.8
Density	1.4 gm/cc	2.4 gm/cc
Radiation Length	14 cm	4.7 cm
Moliere Radius	9 cm	5.8 cm (NA48 says 4.7)
nuclear interaction length	119.7 gm/cm2, 85.8 cm	149.7 gm/cm2, 61.8 cm
pion interaction length	149.0 gm/cm2, 106.7 cm	177.6 gm/cm2, 73.47 cm
critical energy e (mu)	32 MeV (485 GeV)	17 MeV (277 GeV)
Minimum ionization	2.105 MeV/cm	3.28 MeV/cm
Ionization (eV) (atom)	15.8 eV	14.0 eV
Boiling point	87.3 K	119.9 K
index of refraction	1.23	1.3
scintillation wavelength	125 nm	147 nm
Yield	40000/MeV	25000/MeV
Triplet lifetime	1. 6 micros	0.09 micros
Drift velocity at 500 V/cm	1.6 mm/micro-sec	2.1 mm/micro-sec
Radioactiviity	Ar39, Ar42	Kr81, Kr85
Air abundance (ppm)	9300	1.14

https://pdg.lbl.gov/2012/AtomicNuclearProperties/HTML_PAGES/289.html https://periodictable.com/Isotopes/018.42/index2.dm.html

CERN R&D facilities for FLARE Pictures and specs for some cryostats in building 182, Milind Diwan 11/18/2021

CERN and other R&D facilities will be needed to develop the readout

The NA48 Liquid Krypton Calorimeter, Sandro Palestini, CERN, 20 January 2022

Measuring Light and Charge Yields in LKr, Dr Aleksey Bolotnikov (BNL) (2021/12/9)

- Both the light and charge signals provide valuable information needed for events reconstruction in TPC
- The total deposited energy is shared to produce UV scintillation photons and electron-ion pairs –correlated signals
- In LXeTPCs, e. g., in nEXO, the light and charge signals are added together to overcome fluctuations of the election-ion recombination to improve energy resolution

LKr at BNL

Kr storage at Physis

FIG. 3 (color online). Field dependence of scintillation and ionization yield in LXe for 122 keV electron recoils (ER), 56.5 keVr nuclear recoils (NR) and alphas.

Preliminary considerations on light collection & detection Marcin Kuźniak,

AstroCENT, (analytic model implemented by Sarthak Choudhary)

- Adequate light yield (>100 pe/MeV) can be obtained with modest coverage
- Need to optimize the design for trigger and pattern recognition

VUV sensitive SiPMs

Light yield predictions: Kr (i.e. Ar rescaled by 25/40)

EM Shower simulation

FIG. 5. GEANT4 simulations of electromagnetic showers in LAr (left) and LKr (right) produced by 200 GeV (top) and 1 TeV (bottom) electrons. The showers start at z = 0, and all particles, except photons, are shown, with the color indicating the particle's charge: negative (red), neutral (green), and positive (blue). The shower depth in LKr is shorter due to it's smaller radiation length.

Electron and tau containment

https://arxiv.org/pdf/2007.00015.pdf

Downstream Hadronic Calorimeter to Improve Containment

Downstream Hadronic Calorimeter:

- 1.0x1.0 meters
- ~100-160 cm of Fe/scintillator panels, 6-10 interaction lengths
- 5 cm Fe, 1-cm scintillator with X view, and 1-cm with Y view
- Resolution for hadronic showers: 20-40%/Sqrt(E)
- The materials of the cryostat at the down stream will need to be kept <0.1 interaction length
- Muon ranger not included, can add if needed

Light Dark Matter Search in FLArE

FIG. 3. FLArE's projected sensitivities for light DM detection. FLArE can discover dark matter in the parameter space above the blue contours for the integrated luminosities indicated. The gray shaded region is currently excluded, the regions above the black "relic target" contours are cosmologically preferred, and the other colored contours are projections for other experiments.

FLArE search for millicharged particles etc.

Sebastian Trojanowski, AstroCeNT, Nicolaus Copernicus Astronomical Center Polish Academy of Sciences, Dec 9, 2021

Summary

- Preliminary design for the noble liquid detector for FPF (FLArE)
- Detector capability and event rate preliminarily studied
- Progress in LAr/KAr choices, photon detection, detector simulation and physics reach studies
- Include a hadronic calorimeter to improve detector containment
- The detector geometry will need to be further optimized
- Also working on: overall integrated approach, triggering, and background suppression study