FPF Whitepaper Status: BSM – LLPs

Ahmed Ismail Oklahoma State University

4th Forward Physics Facility Meeting February 1, 2022

BSM at the FPF: overview

MC tools

Long-lived particles

- vectors
- scalars
- fermions
- axion-like particles
- non-minimal models

```
142 I. Latex Template
143 II. BSM Physics
          1. FORESEE: FORward Experiment SEnsitivity Estimator
          1 Overview on New Vector Particles
          2 Dark Photon
          3. B - L Gauge Boson
          4. L_i - L_j Gauge Bosons
          5. B = 3L: Gauge Bosons
          6. B Gauge Boson

    U(1)T3R Gauge Boson [Bhaskar Dutta, Jason Kumar, Sumit Ghosh]

          8. Production via Proton Bremsstrahlung [Saeid Foroughi-Abari, Adam Ritz]
          9. Additional Production Modes [Peter Reimitz, Simon Plaetzer, Aidin Masouminia]
          10. Decays of Light Vector Particles [Peter Reimitz, Renata Zukanovic Funchal, Ana
          11. Secret Neutrino Interaction Pouva Bakhti, Meshkat Rajaee
          1. Dark Higgs / Singlet Scalar Elina Fuchs, Gilad Perez, [others ???]
          2. Laboratory and Astrophysical Probes [Dev. Fortin, Harris, Sinha, Zhang]
          3. Inflaton at the FPF [Nobuchika Okada, Digesh Raut]
           4. Motivation from freeze-in DM [Andrzei Hryczuk, Maxim Laletin]
          5. Rich dark sector and complementarity with indirect searches [Krzysztof Jodlowski,
             Leszek Roszkowski Schastian Trojanowskii
          6. Muon-philic and Up-philic scalar [Ahmed Ismail et al]
          7. 2HDMs [Shufang Su, Wei Su, Felix Kling, Shuailong Li, Huayang Song]
          8. Crunching Dilatons [Ameen Ismail et al]
          1. Light Long-lived Sterile Neutrino [Herbi Dreiner, Zeren Simon Wang, Jordy de
             Vries, Guanghui Zhou, Julian Y. Günther
          2. HNL mixing with the tau sector in neutrino mass models [Martin Hirsch and Juan

    Tree-level Decays of O(GeV) Supersymmetric Neutralinos from D and B Mesons

             Herbi K. Dreiner, Zeren Simon Wang, Jordy de Vries, Guanghui Zhou, Julian Y.
          4. Radiative Decays of sub-GeV Supersymmetric Neutralinos from Light Mesons
             [Herbi K. Dreiner, Dominik Köhler, Saurabh Nangia, Zeren Simon Wang]
          1. Charming ALPs [Adrian Carmona, Christiane Scherb, Pedro Schwaller]
          2. Bremming Enhanced ALP Productions and FPF Sensisivity | Zhen Liu, Kunfeng
          1. Dynamical Dark Matter | Fei Huang, Keith Dienes, Brooks Thomas, Jonathan Feng,
             Max Fieg, Seung J. Lee]
```

```
2. Secondary Production in BSM and Neutrino Interactions [Krzysztof Jodlowski
      Felix Kling, Leszek Roszkowski, Sebastian Trojanowskil
   3. Light dark sector going through chain decay [Yazaman Farzan et al]
   4. Dark Axion Portal at FASER [Hye-Sung Lee, Patrick deNiverville]
   5. Z' to RH neutrinos [Deppisch, Kulkarni, Liu]
   6. Fermion portal effective operators [Darme, Ellis, You]
   7. search for sterile neutrino with light gauge interactions [Pyungwon Ko, Yongso
   8. beyond the minimal model of dark photon/extra gauge boson, and lepton flavor
      violation [Takashi Shimomura et al]
   9. Light dark scalars through Z' / EFT [Enrico Bertuzzo, Marco Taoso]
  10. Freeze-in sterile neutrino DM [Arindam Das, Srubabati Goswami, Vishnudath
      K. N., Tanmay Kumar Poddar

    The ν<sub>B</sub>-philic dark photon [Garv Chauhan, Xun-Jie Xu]

  12. Imprints of scale invarince and freeze-in dark matter at FPF |Basabendu Barman
      Anish Ghoshall
  13. Bound state formation and LLPs |Dipan Sengupta, Julia Harz, Mathias Becker
      Emanuelle Copello, Kirtimaan Mohan
G. Dark Matter Scattering at the FPF
   1. Dark photon mediator models
   2. Hadrophilic DM Models
   3. Dark matter search in the Advanced SND@LHC detector [Alexey Boyarsky, Alex
      Mikulenko, Maksym Ovchynnikov, Lesva Shchutskal
   4. Dark states with EM form factors [Jui-Lin Kuo et al]
H. Milli-charged Particles at the FPF [Matthew Citron, Subir Sarkar, Yu-Dai Tsai]
   1 Onirks [Jinmian Li Junie Poil
   2 BSM with Muone
```

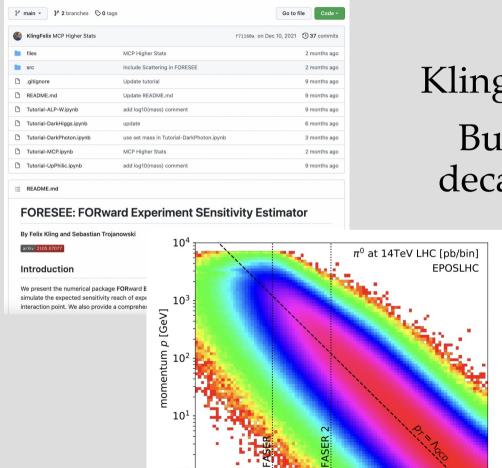
DM scattering → talk by Sebastian Trojanowski

Millicharged particles → talk by Yu-Dai Tsai

Long-lived particles at the FPF

General idea: produce LLP from SM pp collisions

For small momentum transfer, LLP beam is well collimated at high rapidity


LLP decays downstream (FASER2)

Limited set of renormalizable portals

$$S^2H^2$$
 $F^{\mu\nu}F'_{\mu\nu}$ LHN Different phenomenology in more complicated models

Monte Carlo: FORESEE

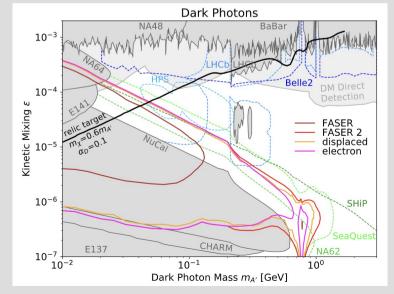
 10^{-2}

angle wrt. beam axis θ [rad]

 10^{-1}

Github Kling, Trojanowski

10⁹

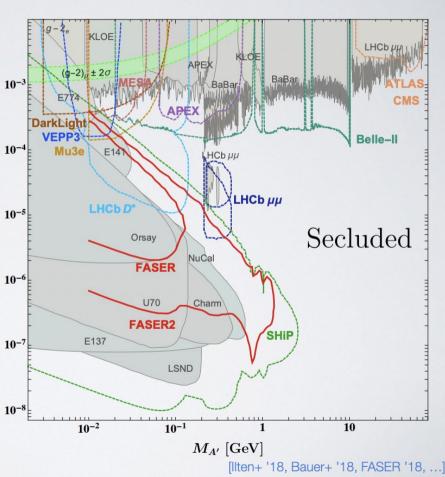

10⁷

106

10⁵

100

Built-in meson spectra for decays to, mixing with LLPs

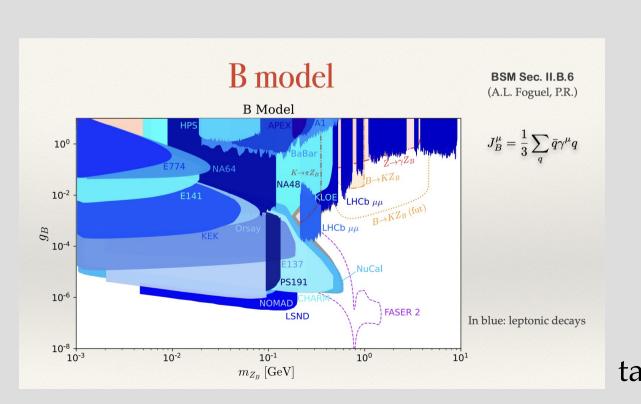


SECLUDED $U(1)_X$

- Minimal secluded $U(1)_X$ model for $J_\mu^X=0$ (only kinetic mixing)
- A' produced in EM

 processes like

 bremsstrahlung, radiative
 return and meson decays
- FASER(2) will be able to search for A' in visible decays and push sensitivity 10-7 significantly

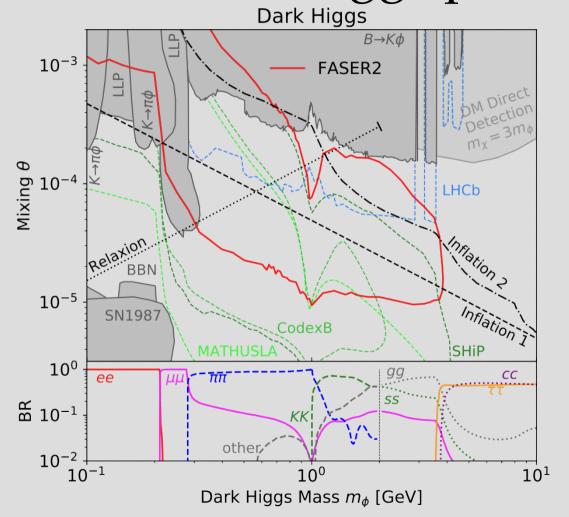

Dark photons

 $\epsilon F^{\mu\nu}F'_{\mu\nu}$

talk by Foldenauer

New gauge bosons

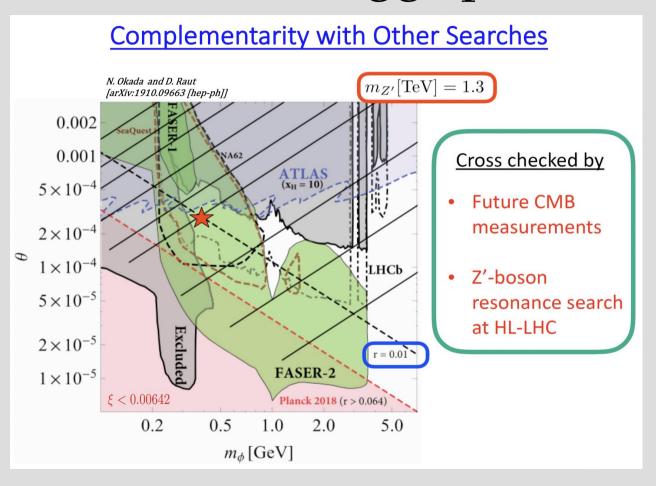
B - L, $L_i - L_j$, B - 3 L_i (Foldenauer) B (Foguel et al.), T3R (Dutta et al.)



Bremsstrahlung calculations (Foroughi-Abari et al.)

Production (Masouminia et al.)

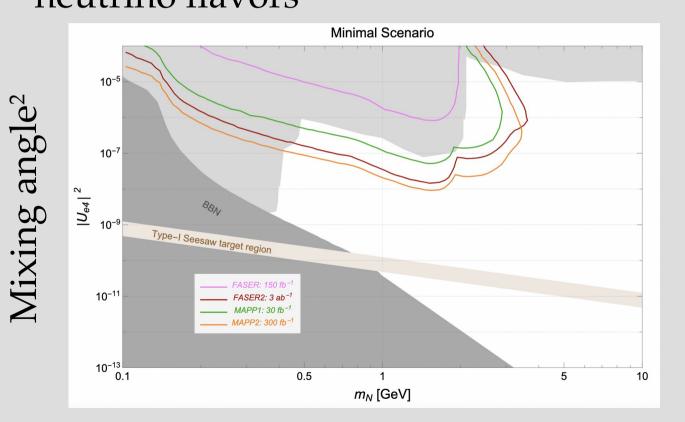
Decays (Reimitz et al.) talk by Reimitz


Higgs portal scalar

 $\sin \theta \frac{m_f}{v} \phi \bar{f} f$ Motivations

Dark matter mediator (Hryczuk et al., Jodlowski et al., Barman et al.) Inflation (Bramante et al., Okada et al.) Relaxion (Fuchs et al., Winkler et al.)

Higgs portal scalar


Complementarity, e.g. Planck and Z' searches (talk by Raut)

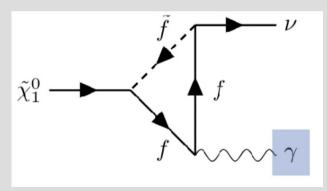
Related searches and models

2HDMs (Su et al.) Astrophysical probes (Dev et al.) Dilatons (Ameen Ismail et al.)

Heavy neutral leptons

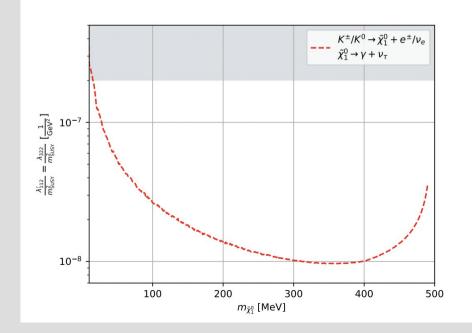
Simplest LHN portal \rightarrow mixing of N with active neutrino flavors

Dreiner et al.


Other flavors (Hirsch et al.)

Effects of extra neutrinos in oscillations: see talk by Timo Karkkainen

Other long-lived fermions


Neutralinos in supersymmetry with R-parity violation

Produce through meson decay, decay to single photon

talk by Kohler

- Probe existing constraints for wide mass range
- Production: λ'_{112} (LQD 112)
- Decay: λ_{322} (LLE 322)

Axion-like particles

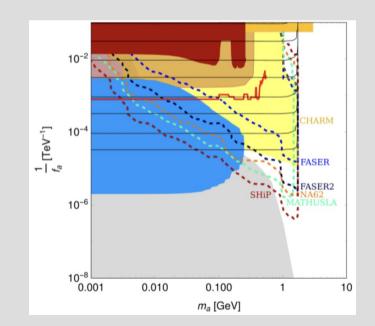
Motivated by, though not restricted to, solutions to the strong CP problem

Relative strength of gauge boson, fermion couplings model-dependent

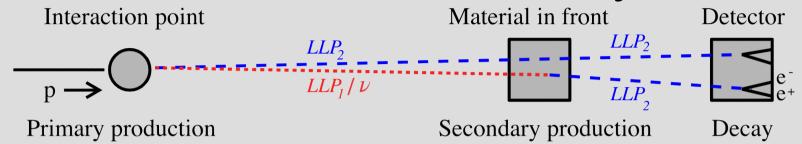

Production: mixing with mesons, flavor-changing decays, Primakoff, brem

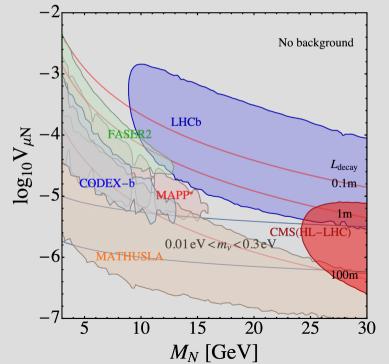
$$\frac{g_s^2}{8}g_{agg}aG^{\mu\nu}\tilde{G}_{\mu\nu}$$

$$\frac{1}{4}g_{a\gamma\gamma}aF^{\mu\nu}\tilde{F}_{\mu\nu}$$


$$g_{aff} \frac{m_f}{v} a \bar{f} \gamma^5 f$$

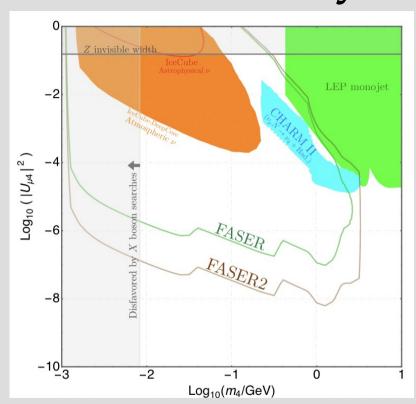
Axion-like particles



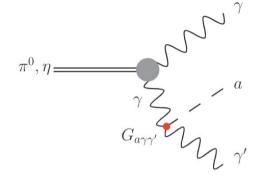

Different coupling structures, e.g. charming ALPs (Carmona et al.)

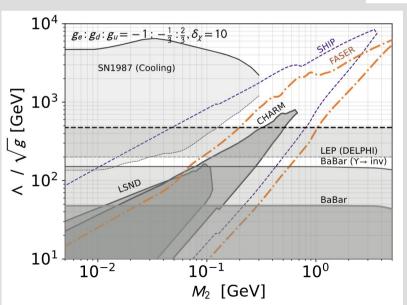
Importance of proton bremsstrahlung when gluon coupling dominates: talk by Lyu

Non-minimal models, briefly



Secondary production with multiple LLPs, Jodlowski et al.


Gauged *B – L* with RH neutrinos, Deppisch et al.


Many more contributions

Sterile neutrino with Z', Jho et al.

Dark axion portal, deNiverville et al.

Fermion portal effective operators, Darme et al.

Outlook

141	CONTENTS

143	II. BSM Physic			
144	A. MC Too			
145	1. FOF			
145	B. LLPs: V			5
147	1. Over		2.0 1 0 1 1 1 100 100 100 100 100 100 100	
148	2. Darl	186	Secondary Production in BSM and Neutrino Interactions [Krzysztof Jodlowski,	
149	3. B -	187	Felix Kling, Leszek Roszkowski, Sebastian Trojanowski]	75
150	$4. L_i -$	188	 Light dark sector going through chain decay [Yazaman Farzan et al] 	77
151	5. B -	189	 Dark Axion Portal at FASER [Hye-Sung Lee, Patrick deNiverville] 	79
152	6. B G	190	Z' to RH neutrinos [Deppisch, Kulkarni, Liu]	82
153	7. U(1)	191	 Fermion portal effective operators [Darme, Ellis, You] 	85
154	8. Proc	192	search for sterile neutrino with light gauge interactions [Pyungwon Ko, Yongsoo	
155	9. Add	193	Jho, Jongkuk Kim	88
156	10. Deca	194	8. beyond the minimal model of dark photon/extra gauge boson, and lepton flavor	
157	Luis	195	violation [Takashi Shimomura et al]	91
158	11. Secr	196	 Light dark scalars through Z' / EFT [Enrico Bertuzzo, Marco Taoso] 	95
	C. LLPs: S	197	10. Freeze-in sterile neutrino DM [Arindam Das, Srubabati Goswami, Vishnudath	
159		198	K. N., Tanmay Kumar Poddar	99
160	1. Darl	199	11. The ν_R -philic dark photon [Garv Chauhan, Xun-Jie Xu]	102
161	2. Labo	200	12. Imprints of scale invarince and freeze-in dark matter at FPF Basabendu Barman,	
162	3. Infla	201	Anish Ghoshal	103
163	4. Mot	202	13. Bound state formation and LLPs [Dipan Sengupta, Julia Harz, Mathias Becker,	
164	5. Rich	203	Emanuelle Copello, Kirtimaan Mohan	105
165	Lesz	204	G. Dark Matter Scattering at the FPF	111
166	6. Muo	205	1. Dark photon mediator models	112
167	7. 2HD	206	2. Hadrophilic DM Models	115
168	8. Crui	207	3. Dark matter search in the Advanced SND@LHC detector [Alexey Boyarsky, Alex	110
169	D. LLPs: F	208	Mikulenko, Maksym Ovchynnikov, Lesya Shchutska	117
170	1. Ligh	209	4. Dark states with EM form factors [Jui-Lin Kuo et al]	121
171	Vrie	210	H. Milli-charged Particles at the FPF [Matthew Citron, Subir Sarkar, Yu-Dai Tsai]	126
172	2. HNI		I. Others	127
173	Carl	211	1. Quirks [Jinmian Li, Junle Pei]	127
174	3. Tree	212	2. BSM with Muons	131
175	Her	213	2. DSM With Muons	131
176	Gün	214	Acknowledgments	133
177	4. Radi		Tomor to Guida	100
178	Her	215	References	134
	E. LLPs: A			
179				
180	1. Chai			
181	2. Brer			
182	Lyu]			
183	F. LLPs: N			
184	1. Dyn			
185	Max			

Thanks to all the contributors!

Currently at ~100 pages on long-lived particles

Reminder: check name, affiliation, acknowledgments on Overleaf