QCD activities: overview

Lucian Harland-Lang, University of Oxford

4th FPF meeting, 1 Feb 2022

Overview

• Prospects for QCD studies are very promising, and a wide range of contributions promised/provided for the white paper!

VII. QCD	7	
A. Executive summary	7	
B. PDF extraction at FPF: a general overview	w 7	
C. Charm production in the forward region	8	
D. Probing the multidimensional structure of	hadrons at the FPF 8	
E. Particle production at very forward rapidit	ties 9	
F. High-energy QCD reactions at the FPF	9	
G. Small- x resummation at the LHC and its i	impact for the FPF 9	
H. Neutrino DIS data in proton and nuclear g	global PDF fits 12	
I. High-energy QCD via a FPF+ATLAS tim	ing coincidence 12	
J. BFKL phenomenology and inclusive forwa	rd processes 16	
K. Charm production in the forward region vi	ia k_T factorisation 16	
L. Detector considerations for QCD measurer	nents at the FPF 17	
M. Neutrino DIS data in global proton and nu	iclear PDF fits and the impact of the FPF 17	
N. The muon puzzle in cosmic rays and the F	PF 19	
O. Neutrino DIS data in nuclear PDF fits & c	charm production in the forward region 19	
P. Estimation of lepton and neutrino fluxes u	sing QCD 19	
Q. gluon saturation and low x evolution (BFF	(L) at the FPF 20	
R. Event generation for forward particle prod	uction (Pythia8) 20	
S. Event generation for forward particle prod	uction (Sherpa) 21	
T. Improved MC generation of forward partic	ele production 21	
U. Monte Carlo studies of small- x dynamics	24	
V. Forward charm production in QCD and pr	compt neutrinos 24	

- White paper chapter will be organised in terms of key physics themes. Will present (brief) summary here. Some detailed talks to follow.
- Many thanks to all the contributors to this white paper and previous meetings. Results + plots taken liberally from these.

QCD@FPF

• Wide range of QCD studies relating to:

• Both aspects can provide new understanding of QCD physics, complementary to ongoing LHC (...) programme.

• Range of areas:

★ pp physics in the forward region:BFKL & saturation physics

 ★ Neutrino-induced DIS: a probe of proton and nuclear PDFs.

★ pp physics in the forward region: intrinsic charm & PDFs

p

p

★ Particle production in the forward region: MC tuning.

CC DIS

• DIS continues to be a key ingredient in global PDF fits. Neutrino-induced CC DIS an important element in this.

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}x\,\mathrm{d}y} = N' \left[y^2 x F_1' + (1-y) F_2' \mp \left(y - \frac{y^2}{2} \right) x F_3' \right]$$
$$F_2^{\nu} = 2x \left(d + s + b + \overline{u} + \overline{c} \right)$$
$$F_2^{\overline{\nu}} = 2x \left(\overline{d} + \overline{s} + \overline{b} + u + c \right)$$

• Key to disentangling nucleon flavour decomposition.

CC DIS

- Strangeness 'puzzle': some degree of tension. between LHC (W,Z) constraints on proton strangeness and DIS.
- To some extent reduced in more recent fits, but difference in pulls remain. CC DIS still important constraint.
- FPF provides significant new information:
 - ★ Extended coverage/higher energy regime.
 - ★ Multiple charm tagging methods ($D \rightarrow \mu$) branching key uncertainty in existing data).
 - Can help to further disentangle this question!

CC DIS

- Previous fixed-target neutrino-induced DIS on fixed nuclear targets. FPF of course no different.
 - ⇒ Either constrain proton PDFs (w/ nuclear corrections) or nuclear PDFs directly.

• Flavour structure and strangeness in particular less constrained in nuclear PDFs, and less LHC W,Z data here \Rightarrow potential for even greater impact.

QCD at the extremes

- FPF neutrinos due to far decay of particles produced in far forward region.
- That is, due to both very high and low partonic x. Roughly:

 $x_{\rm low} \gtrsim 5 \times 10^{-8}$ $x_{\rm high} \lesssim 0.5$

• These regimes are both **poorly constrained** and **theoretically challenging**, requiring modifications to 'standard' QCD framework.

High x and intrinsic charm

- Contribution from this intrinsic component currently open question.
- Fitted charm included in NNPDF fits, and CT studies within phenomenological models.

- Some recent evidence from LHCb data on Z+c production.
 - General expectation: intrinsic content will be enhanced in the high *x* region.
 - \rightarrow FPF data on forward charm production can provide handle on this.

x(iī +d)

• Forward charm production key probe of intrinsic charm, via impact on neutrino flux. Can shed light on this issue.

20

BI

• Range of feasibility studies in white paper.

Forward production & low x physics

- For generic production processes in the high energy (i.e. low *x*) regime a range of novel QCD effects come into play.
- **★** Low x and **BFKL** :
 - For $\alpha_s \ln \frac{1}{x} \sim 1$ fixed order pQCD becomes unreliable and resummation required \rightarrow move beyond DGLAP framework to BFKL based one.
 - BFKL resummation of production process and collinear PDF evolution available. Impact on e.g. HERA data seen.

 Impact largest at forward rapidities, whereas can be washed out in inclusive/high scale processes.

 Predictions for forward charm production at FPF highly sensitive to this. Can play key role in studying the effect of such resummation.

Lag / Lag [ref]

- In this high energy (low *x*) regime `standard' collinear factorization not the only way to approach things.
- Forward charm: k_{\perp} factorization, colour dipole formalism... Forward emissions

$$\sigma(s) = \int d^2 k_{1\perp} rac{dx_1}{x_1} \, \mathcal{F}(x_1,k_{1\perp}) \, d^2 k_{2\perp} rac{dx_2}{x_2} \mathcal{F}(x_2,k_{2\perp}) \, \hat{\sigma}(x_1x_2s,\,k_{1\perp},\,k_{2\perp})$$

 $igwedge ext{ Hyprice nign-energy/commear factorial}$

• Inclusive forward charm production: testing F ground for different approaches to modelling F this regime in QCD.

$$\frac{\alpha_s N_c}{z} \int^1 \frac{dz}{z} = \frac{\alpha_s N_c}{z}$$

 $\bar{\alpha}_s \ll$

• Additionally connected to physics of $\mathcal{F}(x, k_{1\perp}) = \int \frac{d^2 k_{2\perp}}{k_{2\perp}^2} \mathcal{G}_{gluon}^{BFKL}(x, k_{1\perp}, k_{2\perp}) \Phi_p(k_{2\perp}, Q_0^2)$ saturation: at $low^{2\perp} x$ gluon recombination effects expected to become important, modifying gluon density.

• Additional possibility of forward-central events: central particle tagged in ATLAS and forward particle at FPF. Requires precise timing.

 New observables/ correlations then come into play. Useful extra handle on BFKL effects.

• **Bottom line**: there is significant untested grounded for probing the theoretical framework underlying this low *x* region that FPF can aim for.

15

• Note that there is direct interplay in this low *x* region with PDFs, which are less well constrained in this region.

Summary

- FPF can provide insight into important and unresolved questions of QCD:
 - \star What is the flavour structure of the proton and nucleons?
 - ★ What is the size of the intrinsic charm content of the proton?
 - **\star** How well do we understand the low *x* QCD regime?
 - ★ How well can we model forward particles production in our general purpose MCs?
- Have summarised some key points here, but not exhaustive: more contained in white paper!

 $p \blacksquare$

p

