Small-x resummation and its impact for the FPF

Marco Bonvini

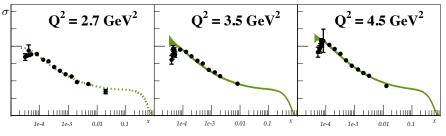
Federico Silvetti

INFN, Rome 1 unit

Sapienza University of Rome

FPF 4 - 1 Feb 2022

Perturbative coefficient functions and splitting functions contain logarithms of x that are single-logarithmically enhanced:


$$P(x, \alpha_s) \text{ or } C(x, \alpha_s) = a_0 + \alpha_s \left[a_1 \ln \frac{1}{x} + b_1\right] + \alpha_s^2 \left[a_2 \ln^2 \frac{1}{x} + b_2 \ln \frac{1}{x} + c_2\right] + \alpha_s^3 \left[a_3 \ln^3 \frac{1}{x} + b_3 \ln^2 \frac{1}{x} + c_3 \ln \frac{1}{x} + d_3\right] + \alpha_s^4 \left[a_4 \ln^4 \frac{1}{x} + b_4 \ln^3 \frac{1}{x} + c_4 \ln^2 \frac{1}{x} + d_4 \ln \frac{1}{x} + e_4\right] + \dots$$

When $\alpha_s \ln rac{1}{x} \sim 1$ the fixed-order expansion is no longer predictive! ψ Resummation

PDF fits with small-x resummation

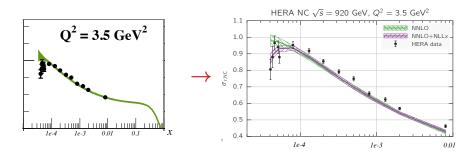
Low x at HERA: importance of resummation in PDF fits

Deep-inelastic scattering (DIS) data from HERA extend down to $x \sim 3 \times 10^{-5}$ Tension between HERA data at low Q^2 and low x with fixed-order theory

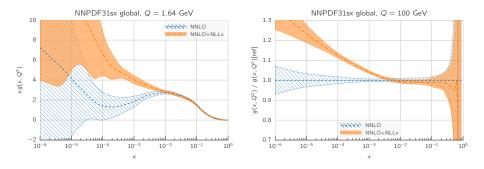
Also leads to a deterioration of the χ^2 when including low- Q^2 data

Attempts to explain this deviation with higher twists, phenomenological models, ...

Successful description of this region when including small-x resummation!

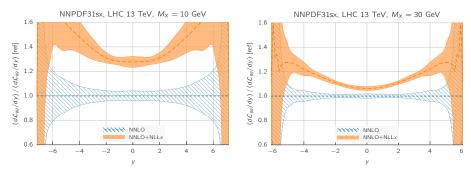

- NNPDF framework [Ball,Bertone,MB,Marzani,Rojo,Rottoli 1710.05935]
- xFitter framework

[xFitterCollaboration+MB 1802.00064] [MB,Giuli 1902.11125]

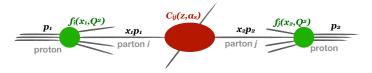

Significantly improved description of the HERA data

$\chi^2/N_{ m dat}$	NNLO	NNLO+NLLx	
×Fitter	1.23	1.17	
NNPDF3.1sx	1.130	1.100	

Substantial improvement due to better description of small-x low- Q^2 HERA data


Fit results: impact on gluon PDF

Note: future higher energy colliders will probe smaller values of $x = (x_{\min} \sim Q^2/s)$ \rightarrow small-x resummation will be even more important in future!

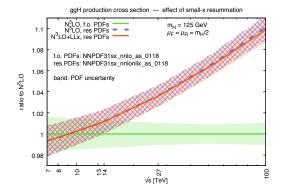

Impact on parton luminosities

Gluon-gluon parton luminosities

Significant impact for small invariant masses, especially at large rapidities

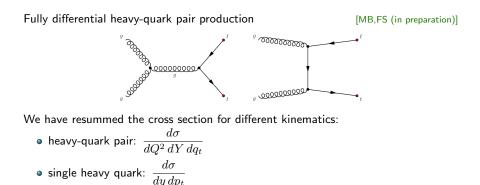
LHC phenomenology

Challenges:


- two protons in the initial state
- want to describe differential distributions

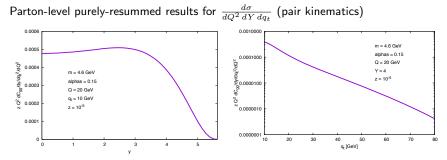
Processes considered so far in HELL:

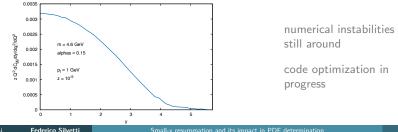
- $gg \rightarrow H$ (inclusive cross section) \checkmark
- $c\bar{c}$, $b\bar{b}$ pair production (fully differential) (almost done)
- Drell-Yan (fully differential) (in progress)


 $gg \to H$ inclusive cross section

[MB, Marzani 1802.07758] [MB 1805.08785]

ggH cross section at FCC-hh can be $\sim 10\%$ larger than expected with NNLO PDFs! At LHC +1% effect

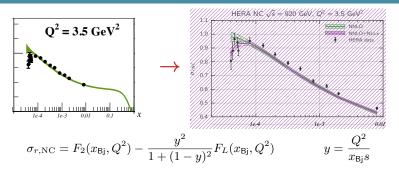

Charm (and bottom) pair production at LHC


Small-x resummation crucial for charm and bottom production

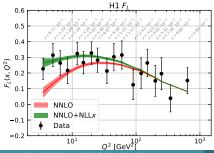
- ullet sensitive to very small $x \rightarrow$ useful to constrain the PDFs
- key process for FPF physics

Heavy-quark pair production at LHC: preliminary results

Parton-level purely-resummed results for $\frac{d\sigma}{du \, dp_{\star}}$ (single-quark kinematics)



Key messages:

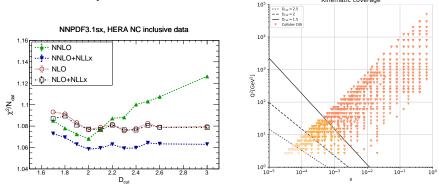

- resummation is needed at small-x
- it stabilizes perturbative behaviour
- improved PDF fits
- $\bullet\,$ large impact on gluon PDF for $x \lesssim 10^{-3}$
- significant impact expected at LHC at low invariant mass and large rapidity

Backup slides

How resummation reproduces the turnover in HERA data

The better description mostly comes from a larger resummed F_L

Marco Bonvini


mall-x resummation and its impact in PDF determination

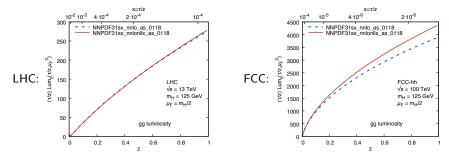
Fit results: χ^2 as quality estimator and the onset of BFKL dynamics

$\chi^2/N_{ m dat}$	NLO	NLO+NLLx	NNLO	NNLO+NLLx
xFitter NNPDF3.1sx	1.117	1.120	1.23 1.130	1.17 1.100
	these are similar		largest	smallest

Hierarchy as expected from splitting function behaviour!

Mostly due to HERA data: we study the $\chi^2/N_{\rm dat}$ profile as we cut out HERA data at small x small Q^2

Marco Bonvini


Why is the effect of resummation mostly driven by the PDFs?

Let's consider the collinear factorization formula

$$\frac{d\sigma}{dQ^2 dY...} = \int_{\tau}^{1} \frac{dz}{z} \int d\hat{y} f_i\left(\sqrt{\frac{\tau}{z}}e^{\hat{y}}, Q^2\right) f_j\left(\sqrt{\frac{\tau}{z}}e^{-\hat{y}}, Q^2\right) \frac{dC_{ij}}{dy...}(z, Y - \hat{y}, ..., \alpha_s)$$

The small z integration region, where logs in C are large, is weighted by the PDFs at large momentum fractions $x = \sqrt{\frac{\tau}{z}} e^{\pm \hat{y}}$ Since PDFs die fast at large x, especially the gluon, the small-z region is suppressed!

Rather, the large z region is enhanced by the gluon-gluon luminosity In that region, the difference between fixed-order and resummed PDFs is large

