Towards precision studies of high-energy QCD via a **FPF+ATLAS tight timing coincidence**

ECT* EUROPEAN CENTRE FOR THEORETICAL STUDIES IN NUCLEAR PHYSICS AND RELATED AREAS

4th Forward Physics Facility Meeting February 1st, 2022

Francesco Giovanni Celiberto ECT*/FBK Trento & INFN-TIFPA

Trento Institute for **Fundamental Physics** and Applications

HAS QCD HADRONIC STRUCTURE AND

QUANTUM CHROMODYNAMICS

Collinear factorization \rightarrow well-established formalism, successes in QCD pheno

Stability

Natural

FPF+ATLAS Coincidence

> Towards **Precision** Studies

High-energy resummation at the FPF

Natural

Stability

High-energy resummation at the FPF

Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions

+ATLAS Coincidence

> Towards **Precision Studies**

Collinear factorization \rightarrow well-established formalism, successes in QCD pheno

Introduction 82 Motivation

High-energy resummation at the FPF

Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions

Natural **Stability**

Convergence of perturbative series spoiled when $\alpha_{s} \ln(s) \sim 1$

ATLAS Coincidence

> Towards **Precision Studies**

Collinear factorization \rightarrow well-established formalism, successes in QCD pheno

ntroduction 82 Motivation

High-energy resummation at the FPF

Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions

Natural **Stability**

ATLAS

Coincidence

Towards

Precision

Studies

Convergence of perturbative series spoiled when $\alpha_s \ln(s) \sim 1$

All-order resummation \rightarrow **BFKL** approach at LL: $\alpha_s^n \ln(s)^n$, and NLL: $\alpha_s^{n+1} \ln(s)^n$

Collinear factorization \rightarrow well-established formalism, successes in QCD pheno

ntroduction 82 Motivation

Natural

Stability

High-energy resummation at the FPF

Convergence of perturbative series spoiled when $\alpha_s \ln(s) \sim 1$

Coincidence

Towards **Precision Studies**

- **Collinear factorization** \rightarrow well-established formalism, successes in QCD pheno
- Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions
- All-order resummation \rightarrow **BFKL** approach at LL: $\alpha_s^n \ln(s)^n$, and NLL: $\alpha_s^{n+1} \ln(s)^n$
- **Ultraforward** emissions \rightarrow golden channels to access HE dynamics

ntroduction 82 Motivation

Natural

Stability

High-energy resummation at the FPF

Collinear factorization \rightarrow well-established formalism, successes in QCD pheno

Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions

Convergence of perturbative series spoiled when $\alpha_s \ln(s) \sim 1$

Coincidence

Ultraforward emissions \rightarrow golden channels to access HE dynamics

Natural stability of HE resummation \leftrightarrow path to **precision studies** at the **FPF**

Towards **Precision Studies**

All-order resummation \rightarrow **BFKL** approach at LL: $\alpha_s^n \ln(s)^n$, and NLL: $\alpha_s^{n+1} \ln(s)^n$

Natural

Stability

High-energy resummation at the FPF

Convergence of perturbative series spoiled when $\alpha_s \ln(s) \sim 1$

Coincidence

Towards **Precision Studies**

- **Collinear factorization** \rightarrow well-established formalism, successes in QCD pheno
- Enhanced *energy* single logs in fixed-order description of high-energy (HE) collisions
- All-order resummation \rightarrow **BFKL** approach at LL: $\alpha_s^n \ln(s)^n$, and NLL: $\alpha_s^{n+1} \ln(s)^n$
- **Ultraforward** emissions \rightarrow golden channels to access HE dynamics
- **Natural stability** of HE resummation \leftrightarrow path to **precision studies** at the **FPF**
- Parton content of proton at small- $x \rightarrow BFKL UGD$, resummed PDFs, small-x TMDs

Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_T and large rapidity separation, ΔY

Moderate x (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach

$$\int_{S} \int_{0}^{1} dx_{1} \int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k_{1}} d^{2}\vec{k_{2}}}$$

 p_1

Mueller-Navelet jets: hybrid factorization

Inclusive hadroproduction of two jets with high p_T and large rapidity separation, ΔY

Moderate x (*collinear PDFs*), but *t*-channel p_T (*HE factorization*) \rightarrow **hybrid** approach

$$\int_{g_{0}}^{1} dx_{1} \int_{0}^{1} dx_{2} f_{r}(x_{1}, \mu_{F}) f_{s}(x_{2}, \mu_{F}) \frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu_{F})}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}} \xrightarrow{jet vertic}_{(off-shell ample)}$$

$$\frac{d\hat{\sigma}_{r,s}(x_{1}x_{2}s, \mu)}{dy_{1} dy_{2} d^{2}\vec{k}_{1} d^{2}\vec{k}_{2}} = \frac{1}{(2\pi)^{2}} \times \int \frac{d^{2}\vec{q}_{1}}{\vec{q}_{1}^{2}} \mathcal{V}_{J}^{(r)}(\vec{q}_{1}, s_{0}, x_{1}, \vec{k}_{1}) \xrightarrow{(s_{0}, s_{0}, s$$

Mueller-Navelet jets & resummation instabilities

Natural Stability

FPF+ATLAS Coincidence

> Towards **Precision** Studies

Mueller-Navelet jets & resummation instabilities

Strong manifestation of higher-order **instabilities** via scale variation (

At *natural* scales: NLL/LL large, no agreement with data, unphysical values !

NLA BFKL corrections to cross section with opposite sign with respect to the leading order (LO) result and large in absolute value...

- - \checkmark ...by making vanish its β_0 -dependent part
- * "Exact" BLM:

Towards **Precision Studies**

Natural

Stability

FPF+ATLAS

Coincidence

Mueller-Navelet jets & resummation instabilities

Strong manifestation of higher-order **instabilities** via scale variation (!)

♦ ...call for some optimization procedure...

♦ …choose scales to mimic the most relevant subleading terms

• BLM [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]

 \checkmark preserve the conformal invariance of an observable...

 β_0 -dependent factors suppress NLO IFs + NLO Kernel

BLM scales, theory vs experiment: CMS @7TeV with symmetric p_T -ranges, only!

Mueller-Navelet jets & resummation instabilities

Strong manifestation of higher-order **instabilities** via scale variation (

At *natural* scales: NLL/LL large, no agreement with data, unphysical values !

to cross section with opposite sign with respect to	the
ult and large in absolute value	

◊ ...call for some optimization procedure...

♦ …choose scales to mimic the most relevant subleading terms

• BLM [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]

 \checkmark preserve the conformal invariance of an observable...

suppress NLO IFs + NLO Kernel β_0 -dependent factors

BLM scales, theory vs experiment: CMS @7TeV with symmetric p_T -ranges, only!

$\mu_R^{\text{BLM}} \gg \mu_R^{\text{nat.}} \Rightarrow d\sigma^{\text{BLM}}/d\sigma^{\text{nat.}} \sim 10^{-(1\div 2)} \Rightarrow \text{precision studies hampered}$

Mueller-Navelet jets & resummation instabilities

Strong manifestation of higher-order **instabilities** via scale variation (

At *natural* scales: NLL/LL large, no agreement with data, unphysical values !

to cross section with opposite sign with respect to the	
ult and large in absolute value	

◊ ...call for some optimization procedure...

♦ …choose scales to mimic the most relevant subleading terms

• BLM [S.J. Brodsky, G.P. Lepage, P.B. Mackenzie (1983)]

 \checkmark preserve the conformal invariance of an observable... \checkmark ...by making vanish its β_0 -dependent part

suppress NLO IFs + NLO Kernel β_0 -dependent factors

BLM scales, theory vs experiment: CMS @7TeV with symmetric p_T -ranges, only!

$\mu_R^{\text{BLM}} \gg \mu_R^{\text{nat.}} \Rightarrow d\sigma^{\text{BLM}}/d\sigma^{\text{nat.}} \sim 10^{-(1\div 2)} \Rightarrow \text{precision studies hampered}$

Unsuccessful scale optimization \rightarrow processes featuring natural stability (?)

Natural stability of the HE resummation

Higgs + jet ⇔ large transverse masses, partial NLL

Natural stability of the HE resummation

Higgs + jet ⇔ large transverse masses, partial NLL

Heavy flavor $\Leftrightarrow D^*/\Lambda_c/H_b$ VFNS FFs, full NLL

Natural stability of the HE resummation

Higgs + jet ⇔ large transverse masses, partial NLL

Natural stability as a tool to investigate HE dynamics of QCD at the **FPF**

Heavy flavor $\Leftrightarrow D^*/\Lambda_c/H_b$ VFNS FFs, full NLL

P P [F. G. C. *et al.* (2021)]

Light mesons (aFPF + heavy flavor (aATLAS)

Forward + backward CMS detections: Mueller-Navelet, hadron-jet, di-hadron

 $|y_{jet}| < 4.7$

barrel + endcap

 $|y_{\text{hadron}}| < 2.4$

barrel

Light mesons (a) FPF + heavy flavor (a) ATLAS

Forward + backward CMS detections: Mueller-Navelet, hadron-jet, di-hadron

 $|y_{iet}| < 4.7$

barrel + endcap

barrel

Ultra-forward FPF + central ATLAS detections: light mesons + heavy flavor

Light mesons (aFPF + heavy flavor (aATLAS)

Forward + backward CMS detections: Mueller-Navelet, hadron-jet, di-hadron

 $|y_{iet}| < 4.7$

barrel + endcap

barrel

Ultra-forward FPF + central ATLAS detections: light mesons + heavy flavor

 $5 < y_{\pi, K} < 7$ FPF $|y_{D^*,\Lambda_c,H_b}| < 2.4$ ATLAS barrel

Hybrid NLL/collinear factorization vs HE-NLO via the JETHAD method & [F. G. C. (2021)]

***** ; Natural stability at work !

***** ; Natural stability at work !

Scale-variation studies feasible *

NLL and HE-NLO clearly disengaged *

***** ; Natural stability at work !

- NLL and HE-NLO clearly disengaged *
- Systematic uncertainties *
 - NLL*: NNLL effects via BFKL repres.
 - MOM scheme: upper limit (overestimate)

***** ; Natural stability at work !

*

NLL and HE-NLO clearly disengaged *

Scale-variation studies feasible

- Systematic uncertainties *
 - NLL*: NNLL effects via BFKL repres.
 - MOM scheme: upper limit (overestimate)
- **HE resummation** plays a **key role** *
- * Chance to probe PDFs and FFs

* Impact of collinear FFs on ΔY -distribution

Replica method at work *

- * Impact of collinear FFs on ΔY -distribution
- **Replica method** at work *
- Larger spread of replicas at NLL *
- Probe FFs in complementary ranges * Weight of FF replicas in the same set Different sets via *functional correlation*?
- **Complementary studies on FFs** *

Inclusive π^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

Inclusive π^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

- * Signals from all azimuthal modes
- Easy to be analyzed from data *
- Multiplicity: PDF/FF effects quenched *

Inclusive π^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

- * Signals from all azimuthal modes
 - Easy to be analyzed from data *
 - **Multiplicity**: PDF/FF effects quenched *
 - *Novel* and *unexpected* features *

Peak beavior \rightarrow **re-correlation** pattern

Possible **threshold** contamination

Inclusive π^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

- * Signals from all azimuthal modes
 - Easy to be analyzed from data *
 - **Multiplicity**: PDF/FF effects quenched *
 - *Novel* and *unexpected* features *
 - Peak beavior \rightarrow **re-correlation** pattern
 - Possible **threshold** contamination
 - Stringent tests of **HE resummation** *
 - * Chance to explore other resummations

Natural

Stability

Towards new directions

$FPF + ATLAS \ coincidence \rightarrow high \ discovery \ potential \ of QCD$

+ATLAS Coincidence

> Towards **Precision Studies**

- **Significant impact** of *HE dynamics* on *fixed-order* calculations
- Rapidity distribution \rightarrow constrain **FFs** in complementary ranges
- Azimuthal distribution \rightarrow hunt for **novel HE features**
 - → explore **interplay** with other **resummations**

10

Natural

Stability

PF+ATLAS

Coincidence

Towards new directions

$FPF + ATLAS \ coincidence \rightarrow high \ discovery \ potential \ of QCD$

Towards **Precision Studies**

- **Significant impact** of *HE dynamics* on *fixed-order* calculations
- Rapidity distribution \rightarrow constrain **FFs** in complementary ranges
- Azimuthal distribution \rightarrow hunt for **novel HE features**
 - → explore **interplay** with other **resummations**
- Theory: *multi-lateral formalism* \rightarrow **encode** those resummations
- Pheno: *Heavy-hadron* production at the FPF \rightarrow **flavor** studies
 - Hadronic structure at the FPF \rightarrow HE/coll./TMD interplay

10

Backup slides

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY

Inclusive Higgs + jet: azimuthal coefficients

Inclusive h.p. of a Higgs + jet system with high p_T and large rapidity separation, ΔY

Large energy scales expected to **stabilize** the high-energy resummed series

Azimuthal correlations: $C_1/C_0 \equiv \langle \cos \varphi \rangle$ Backup

 $\varphi = \varphi_1 - \varphi_2 - \pi$

Azimuthal correlations: $C_1/C_0 \equiv \langle \cos \varphi \rangle$ Backup

 $\varphi = \varphi_1 - \varphi_2 - \pi$

Higgs + jet

φ -averaged cross section: C_0

 $C_n(\Delta Y, s) = \int_{p_H^{\min}}^{p_H^{\max}} d|\vec{p}_H| \int_{p_I^{\min}}^{p_J^{\max}} d|\vec{p}_J| \int_{y_H^{\min}}^{y_H^{\max}} dy_H \int_{y_J^{\min}}^{y_J^{\max}} dy_J \,\delta\left(y_H - y_J - \Delta Y\right) \,\mathcal{C}_n$

φ -averaged cross section: C_0

Backup

[F. G. C., D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)]

[F. G. C., D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)]

[F. G. C., D. Yu. Ivanov, M. M. A. Mohammed, A. Papa (2021)]

p_H -distribution: $dC_0/dp_H(M_t \rightarrow +\infty)$

 $\frac{d\sigma(|\vec{p}_H|, \Delta Y, s)}{d|\vec{p}_H|d\Delta Y} = \int_{p_\tau^{\min}}^{p_J^{\max}} d|\vec{p}_J| \int_{y_\tau^{\min}}^{y_H^{\max}} dy_H \int_{y_\tau^{\min}}^{y_J^{\max}} dy_J \,\delta\left(y_H - y_J - \Delta Y\right) \,\mathcal{C}_0$

 p_H -distribution: $dC_0/dp_H(M_t \rightarrow +\infty)$

 $\frac{d\sigma(|\vec{p}_H|, \Delta Y, s)}{d|\vec{p}_H|d\Delta Y} = \int_{n_{\tau}^{\min}}^{n_{T}^{\max}} d|\vec{p}_J| \int_{y_{\tau}^{\min}}^{y_H^{\max}} dy_H \int_{y_{\tau}^{\min}}^{y_J^{\max}} dy_J \delta\left(y_H - y_J - \Delta Y\right) \mathcal{C}_0$

Inclusive π^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

Inclusive K^{\pm} (FPF) + $D^{*\pm}$ (ATLAS) production

[FPF Snowmass Whitepaper]

