EXCESS OF TAU EVENTS AT SND@LHC, FASERv AND FASERv2

Yasaman Farzan
IPM, Tehran

This talk is based on
Saeed Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

ν_{e}

ν_{μ}
ν_{τ}
Direct discovery announcement: 1956

Direct discovery announcement: 1962

Direct discovery announcement: 2000

Cowan and Reines

Lederman, Schwartz, Steinberger

DONUT

Sources

- Beta decay: $\bar{\nu}_{e}$
- Fusion in stars: ν_{e}
- Pion and Kaon decay: $\nu_{\mu}, \bar{\nu}_{\mu}$
- Muon decay: $\nu_{\mu}, \bar{\nu}_{\mu}$

Reactor neutrinos, solar neutrinos, Earth neutrinos, atmospheric neutrinos, short baseline and long baseline neutrinos

Tau neutrino interaction at FP experiments

Kling, "Forward Neutrino fluxes at the LHC," PRD 104 (21) 11, 113008

Standard model prediction

$$
\begin{array}{ll}
\nu_{\tau}+\bar{\nu}_{\tau} \text { events at FASER } v: & 21.6_{-6.9}^{+12.5} \\
& \\
\nu_{\tau}+\bar{\nu}_{\tau} \text { events at SND@LHC : } & 8.8_{-1.5}^{+2.7}
\end{array}
$$

Excess due to New Physics?

(1) $\pi^{+} \rightarrow \mu^{+} \nu_{\tau} ; \quad$ Lepton number conserving
(2) $\pi^{+} \rightarrow \mu^{+} \bar{\nu}_{\tau} \quad$ Lepton number violating
(3) $\nu_{e}+$ nucleus $\rightarrow \tau+X$.
S. Ansarifard and Y. Farzan, "Excess of Tau events at SND@LHC, FASER v and FASERv2," arXiv:2112.08799.

Pion decay universality

$$
R_{e / \mu}=\frac{\Gamma\left[\left(\pi^{+} \rightarrow e^{+} \nu\right)+\left(\pi^{+} \rightarrow e^{+} \nu \gamma\right)\right]}{\Gamma\left[\left(\pi^{+} \rightarrow \mu^{+} \nu\right)+\left(\pi^{+} \rightarrow \mu^{+} \nu \gamma\right)\right]}
$$

PIENU collaboration:

$$
R_{e / \mu}=(1.2344 \pm 0.0023(\text { stat }) \pm 0.0019(\text { syst })) \times 10^{-4}
$$

[^0]Lett. 115 (2015) 7, 071801

$$
\begin{gathered}
R_{e / \mu}=(1.2344 \pm 0.0023(\text { stat }) \pm 0.0019(\text { syst })) \times 10^{-4} \\
\operatorname{Br}\left(\pi^{+} \rightarrow e^{+} \nu_{\tau}\right)<2.4 \times 10^{-3} \operatorname{Br}\left(\pi^{+} \rightarrow e^{+} \nu_{e}\right)=2.8 \times 10^{-7} \\
\operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right)<2.4 \times 10^{-3} \operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=2.4 \times 10^{-3} . \\
\operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \bar{\nu}_{\tau}\right)<2.4 \times 10^{-3} \mathrm{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right)=2.4 \times 10^{-3}
\end{gathered}
$$

$$
\text { Unless } \frac{B r\left(\pi^{+} \rightarrow e^{+} \nu_{\tau}\right)}{B r\left(\pi^{+} \rightarrow e^{+} \nu_{e}\right)}=\frac{B r\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right)}{\operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right)}
$$

A model for $\pi^{+} \rightarrow \mu^{+} \nu_{\tau}$

The effective four-Fermi coupling

$$
G_{\nu \mu}\left(\bar{\mu} \frac{1-\gamma_{5}}{2} \nu_{\tau}\right)\left(\bar{d} \frac{1 \pm \gamma_{5}}{2} u\right)
$$

$\Gamma\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right)=G_{\nu \mu}^{2} \frac{m_{\pi}}{32 \pi} \frac{F_{\pi}^{2}}{\left(m_{u}+m_{d}\right)^{2}}\left(m_{\pi}^{2}-m_{\mu}^{2}\right)^{2}$.

With $G_{\nu \mu} \sim 4 \times 10^{-8} \mathrm{GeV}^{-2}, \operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right) \sim 10^{-3}$

Model for $\pi^{+} \rightarrow \mu^{+} \nu_{\tau}$

$$
\begin{aligned}
& \lambda_{d} \bar{d} \Phi_{1}^{\dagger} Q_{1}+\lambda_{u} \bar{u} \Phi_{1}^{T} c Q_{1}+\lambda_{\mu} \bar{\mu} \Phi_{2}^{\dagger} L_{\tau}+\text { H.c. }, \\
\Phi_{1}= & \left(\phi_{1}^{+} \phi_{1}^{0}\right)^{T} \\
\Phi_{2}= & \left(\phi_{2}^{+} \phi_{2}^{0}\right)^{T} \\
L_{\tau}= & \left(\nu_{\tau} \tau_{L}\right)^{T} \\
Q_{1}= & \left(u_{L} d_{L}\right)^{T} . \quad c=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Why $\Phi_{1} \neq \Phi_{2}$?

$$
\begin{aligned}
& \lambda_{d} \bar{d} \Phi_{1}^{\dagger} Q_{1}+\lambda_{u} \bar{u} \Phi_{1}^{T} c Q_{1}+\lambda_{\mu} \bar{\mu} \Phi_{2}^{\dagger} L_{\tau}+\text { H.c. }, \\
& \Phi_{1}=\Phi_{2} \Longrightarrow-\left\{\begin{array} { c }
{ \begin{array} { c }
{ \lambda _ { u } - \lambda _ { d } } \\
{ G _ { \pi } (\overline { \mu } _ { R } \tau _ { L }) } \\
{ G _ { \eta } (\overline { u } \gamma _ { R } \tau _ { L }) (\overline { u } \gamma _ { 5 } u + \overline { d } \gamma _ { 5 } d) } \\
{ \lambda _ { u } + \lambda _ { d } }
\end{array} }
\end{array} \Longleftrightarrow \left[\begin{array}{c}
\tau \rightarrow \mu \pi^{0} \\
\tau \rightarrow \mu \eta^{0}
\end{array}\right.\right. \\
& \Longrightarrow\left[\begin{array}{l}
G_{\pi}<5 \times 10^{-9} \\
\mathrm{GeV}^{-2} \\
G_{\eta}<4 \times 10^{-10} \\
\mathrm{GeV}^{-2} .
\end{array}\right.
\end{aligned}
$$

$$
\text { The } U_{1}(1) \times U_{2}(1) \text { charges of the fields. }
$$

charges	Φ_{1}	Φ_{2}	L_{τ}, τ_{R}	L_{μ}, μ_{R}	Q	d_{R}
$U_{1}(1)$	1	0	0	0	β	$\beta-1$
$U_{2}(1)$	0	1	α	$1+\alpha$	0	0

Explaining smallness of u and d quark masses as bonus

Breaking the global $U_{1}(1) \times U_{2}(1)$

$$
\begin{gathered}
\lambda_{12}\left(H^{T} c \Phi_{1}\right)\left(\Phi_{2}^{\dagger} c H^{*}\right) \\
U_{1}(1) \times U_{2}(1) \longmapsto U(1)
\end{gathered}
$$

Charged components mix but not the neutral components.

$$
G_{\nu \mu}=\frac{\lambda_{\mu} \lambda_{d}}{m_{\phi_{1}^{+}}^{2}} \frac{\lambda_{12} v^{2} / 2}{m_{\phi_{2}^{+}}^{2}}=4 \times 10^{-8} \mathrm{GeV}^{-2} \frac{\lambda_{\mu}}{0.3} \frac{\lambda_{d}}{0.3} \frac{\lambda_{12}}{0.12} \frac{(300 \mathrm{GeV})^{2}}{m_{\phi_{1}^{+}}^{2}} \frac{(300 \mathrm{GeV})^{2}}{m_{\phi_{2}^{+}}^{2}}
$$

Pair production at LHC

$$
\begin{aligned}
& \phi_{2}^{0} \rightarrow \mu^{+} \tau^{-} \text {and } \phi_{2}^{+} \rightarrow \mu^{+} \nu_{\tau} . \\
& \phi_{2}^{+}\left(\phi_{2}^{0}\right)^{\dagger} . \quad \phi_{2}^{-} \phi_{2}^{0} \quad \phi_{2}^{+} \phi_{2}^{-} \quad\left(\phi_{2}^{0}\right)^{\dagger} \phi_{2}^{0} \\
& \square \\
& \mu^{+} \nu_{\tau} \mu^{-} \tau^{+} \mu^{-} \bar{\nu}_{\tau} \mu^{+} \tau^{-} \mu^{+} \nu_{\tau} \mu^{-} \bar{\nu}_{\tau} \mu^{-} \tau^{+} \mu^{+} \tau^{-} \\
& \text {Invariant mass }=m \phi_{2}^{0}
\end{aligned}
$$

Enhancement in decay rate

$$
G_{\nu \mu}\left(\bar{\mu} \frac{1-\gamma_{5}}{2} \nu_{\tau}\right)\left(\bar{d} \frac{1 \pm \gamma_{5}}{2} u\right)
$$

No such enhancement in $\nu_{\tau}+$ nucleus $\rightarrow \mu+X$

NOMAD bounds

The energy of tau from $\pi^{+} \rightarrow \nu_{\tau} \mu^{+}$or $\pi^{+} \rightarrow \bar{\nu}_{\tau} \mu^{+} \quad$ will be too low to be detectable.

$$
\text { A model for } \pi^{+} \rightarrow \bar{\nu}_{\tau} \mu^{+}
$$

with a connection to observed anomalies in τ decay

$$
\begin{gathered}
\mathcal{L}=\mathcal{L}_{\mathrm{SM}}-\left(\lambda_{i j} / 2 \bar{L}_{a, i}^{c} \varepsilon_{a b} L_{b, j} \Phi^{+}+\text {h.c. }\right) \\
\delta\left(\ell_{i} \rightarrow \ell_{j} \nu \nu\right)=\frac{\mathcal{A}_{N P}\left(\ell_{i} \rightarrow \ell_{j} \nu_{i} \bar{\nu}_{j}\right)}{\mathcal{A}_{S M}\left(\ell_{i} \rightarrow \ell_{j} \nu_{i} \bar{\nu}_{j}\right)}=\frac{\left|\lambda_{i j}^{2}\right|}{g_{2}^{2}} \frac{m_{W}^{2}}{m_{\phi}^{2}} .
\end{gathered}
$$

Crivellin et al, PRD 103 (2021) 7, 073002

Hint for new physics

Crivellin et al, PRD 103 (2021) 7, 073002

$$
0.052 \frac{m_{\Phi^{+}}}{300 \mathrm{GeV}}<\lambda_{23}<0.148 \frac{m_{\Phi^{+}}}{300 \mathrm{GeV}}
$$

Our model

$$
\mathcal{L}=-\frac{\lambda_{23}}{2} L_{a, \mu} \epsilon_{a b} L_{b \tau} \Phi^{+}+\text {H.c }=-\frac{\lambda_{23}}{2}\left(\nu_{\mu}^{T} c \tau_{L}-\mu_{L}^{T} c \nu_{\tau}\right) \Phi^{+}+\text {H.c }
$$

charges	Φ_{1}	Φ^{+}	L_{τ}, τ_{R}	L_{μ}, μ_{R}	Q	d_{R}
$U(1)$	1	1	$-1 / 2-\alpha$	$-1 / 2+\alpha$	β	$\beta-1$

$$
\begin{gathered}
A \Phi^{-} H^{T} c \Phi_{1} \sin 2 \theta=\frac{2 A v / \sqrt{2}}{m_{\phi_{1}^{+}}^{2}-m_{\Phi^{+}}^{2}} \\
G_{\bar{\nu} \mu}\left(\bar{d} \frac{1-\gamma_{5}}{2} u\right)\left(\nu_{\mu}^{T} c \tau_{L}-\mu_{L}^{T} c \nu_{\tau}\right)+\text { H.c. } \quad G_{\bar{\nu} \mu}=\frac{\lambda_{d} \lambda_{23}}{2} \frac{A v / \sqrt{2}}{m_{\Phi^{+}}^{2} m_{\phi_{1}^{+}}^{2}} . \\
\Gamma\left(\tau^{-} \rightarrow \bar{\nu}_{\mu} \pi^{-}\right) \sim \frac{G_{\bar{\nu} \mu}^{2}}{4 \pi} \frac{F_{\pi}^{2} m_{\pi}^{2}}{\left(m_{u}+m_{d}\right)^{2}} m_{\tau}
\end{gathered}
$$

Our model

$$
\mathcal{L}=-\frac{\lambda_{23}}{2} L_{a, \mu} \epsilon_{a b} L_{b \tau} \Phi^{+}+\text {H.c }=-\frac{\lambda_{23}}{2}\left(\nu_{\mu}^{T} c \tau_{L}-\mu_{L}^{T} c \nu_{\tau}\right) \Phi^{+}+\text {H.c }
$$

charges	Φ_{1}	Φ^{+}	L_{τ}, τ_{R}	L_{μ}, μ_{R}	Q	d_{R}
$U(1)$	1	1	$-1 / 2-\alpha$	$-1 / 2+\alpha$	β	$\beta-1$

$$
\begin{aligned}
& A \Phi^{-} H^{T} c \Phi_{1} \quad \sin 2 \theta=\frac{2 A v / \sqrt{2}}{m_{\phi_{1}^{+}}^{2}-m_{\Phi^{+}}^{2}} \\
& G_{\bar{\nu} \mu}\left(\bar{d} \frac{1-\gamma_{5}}{2} u\right)\left(\nu_{\mu}^{T} c \tau_{L}-\mu_{L}^{T} c \nu_{\tau}\right)+\text { H.c. } \quad G_{\bar{\nu} \mu}=\frac{\lambda_{d} \lambda_{23}}{2} \frac{A v / \sqrt{2}}{m_{\Phi^{+}}^{2} m_{\phi_{1}^{+}}^{2}} . \\
& G_{\bar{\nu} \mu} \sim 5 \times 10^{-8} \mathrm{GeV}^{-2},
\end{aligned}
$$

Non-standard τ production at the detector

$$
\begin{aligned}
& \lambda_{e} \bar{\tau}_{R} \Phi_{2}^{\dagger} L_{e} \\
& G_{e}\left(\bar{\tau}_{R} \nu_{e}\right)\left(\bar{u}_{L} d_{R}\right) \quad \nu_{e}+\text { nucleus } \rightarrow \tau+X \\
& G_{e}=\lambda_{d} \lambda_{e} \lambda_{12} v^{2} /\left(2 m_{\phi_{1}^{+}}^{2} m_{\phi_{2}^{+}}^{2}\right)
\end{aligned}
$$

uncertainty on $\tau^{+} \rightarrow \pi^{+} \nu$ gives the constraint $G_{e(\mu)}<5 \times 10^{-7} \mathrm{GeV}^{-2}$

Connection to the Charged Current Non-Standard Interaction formalism

$$
\begin{aligned}
&\left|\nu_{\alpha}^{s}\right\rangle=\left|\nu_{\alpha}\right\rangle+\sum_{\gamma \in\{e, \mu, \tau\}} \epsilon_{\alpha \gamma}^{s}\left|\nu_{\gamma}\right\rangle \\
&\left|\nu_{\alpha}^{s}\right\rangle \text { is the eigenstate produced in the source along with the charged lepton of flavor } \alpha \\
&\left\langle\nu_{\alpha}^{d}\right|=\left\langle\nu_{\alpha}\right|+\sum_{\gamma \in\{e, \mu, \tau\}} \epsilon_{\gamma \alpha}^{d}\left\langle\nu_{\gamma}\right| \\
& \quad\left|\nu_{\alpha}^{d}\right\rangle \text { is the eigenstate which can produce the charged lepton of flavor } \alpha \text { in the detector. }
\end{aligned}
$$

SM: $\quad\left|\nu_{\alpha}^{s}\right\rangle=\left|\nu_{\alpha}^{d}\right\rangle=\left|\nu_{\alpha}\right\rangle$

$\pi^{+} \rightarrow \mu^{+} \nu_{\tau}$ in terms of CC NSI

$$
\begin{aligned}
&\left|\nu_{\mu}^{s}\right\rangle=\frac{\mathcal{M}_{1}\left|\nu_{\mu}\right\rangle+\mathcal{M}_{2}\left|\nu_{\tau}\right\rangle}{\sqrt{\left|\mathcal{M}_{1}\right|^{2}+\left|\mathcal{M}_{2}\right|^{2}}} \simeq\left|\nu_{\mu}\right\rangle+\mathcal{M}_{2} / \mathcal{M}_{1}\left|\nu_{\tau}\right\rangle \\
& \mathcal{M}_{1}=\mathcal{M}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\mu}\right) \\
& \mathcal{M}_{2}=\mathcal{M}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right) \\
& \epsilon_{\mu \tau}^{s}=\frac{\mathcal{M}_{2}}{\mathcal{M}_{1}} \quad\left|\epsilon_{\mu \tau}^{s}\right|^{2}=\left|\mathcal{M}_{2}\right|^{2} /\left|\mathcal{M}_{1}\right|^{2} \simeq \operatorname{Br}\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right)
\end{aligned}
$$

Short baseline experiments

$$
\begin{aligned}
& 2 \operatorname{Re}\left[U_{\mu i} U_{\mu i}^{*} U_{\mu j}^{*} U_{\tau j}\left(\epsilon_{\mu \tau}^{s}\right)^{*} e^{i\left(m_{i}^{2}-m_{j}^{2}\right) L /\left(2 E_{\nu}\right)}\right] \ll 1 \\
& 2 \operatorname{Re}\left[U_{\tau i} U_{\mu i}^{*} U_{\tau j}^{*} U_{\tau j}\left(\epsilon_{\mu \tau}^{s}\right)^{*} e^{i\left(m_{i}^{2}-m_{j}^{2}\right) L /\left(2 E_{\nu}\right)}\right] \ll 1
\end{aligned}
$$

Spectra of $\tau+\bar{\tau}$ produced at FASER ν normalized to 1.

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

Spectra of $\tau+\bar{\tau}$ produced at FASER ν normalized to 1.

Pythia 8 (hard)
Kling, "Forward Neutrino fluxes at the LHC," PRD 104 (21) 11, 113008
S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

CHARACTERISTICS OF FASER ν, SND@LHC AND FASER $\nu 2$

number of τ events at the i th bin

No of W nuclei

$$
\begin{aligned}
B_{i}^{J}= & \epsilon_{\tau} N_{W} \int_{E_{\min }^{i}}^{E_{m a x}^{i}} \int_{m_{\tau}} \int_{E_{\tau}}\left[F_{\nu_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\nu_{\tau}+\text { nucleus } \rightarrow \tau+X\right)+\right. \\
& \left.F_{\bar{\nu}_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\bar{\nu}_{\tau}+\text { nucleus } \rightarrow \tau^{+}+X\right)\right] f\left(E_{\tau}^{\prime}, E_{\tau}\right) d E_{\nu} d E_{\tau} d E_{\tau}^{\prime}
\end{aligned}
$$

$\epsilon_{\tau}=0.67$ is the efficiency of the ν_{τ} detection
$f\left(E_{\tau}^{\prime}, E_{\tau}\right)$ is the energy resolution function which we take to be a Gaussian with a 30% width.
$\left(E_{\min }^{i}, E_{\max }^{i}\right)^{\prime}$ determine the limits of the i th energy bin.

CHARACTERISTICS OF FASER ν, SND@LHC AND FASER $\nu 2$

number of τ events at the i th bin

$$
\begin{aligned}
B_{i}^{J}= & \epsilon_{\tau} N_{W} \int_{E_{\min }^{i}}^{E_{\text {max }}^{i}} \int_{m_{\tau}} \int_{E_{\tau}}\left[F_{\nu_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\nu_{\tau}+\text { nucleus } \rightarrow \tau+X\right)+\right. \\
& \left.F_{\bar{\nu}_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\bar{\nu}_{\tau}+\text { nucleus } \rightarrow \tau^{+}+X\right)\right] f\left(E_{\tau}^{\prime}, E_{\tau}\right) d E_{\nu} d E_{\tau} d E_{\tau}^{\prime}
\end{aligned}
$$

$$
\chi_{\text {rel }}^{2}=\sum_{i}\left[\frac{\left[(1+f) B_{i}^{\text {true }}-N_{i}^{J}\right]^{2}}{B_{i}^{\text {true }}}+\frac{f^{2}}{\sigma_{\eta}^{2}}\right]
$$

$$
\sigma_{\eta}=15 \%
$$

CHARACTERISTICS OF FASER ν, SND@LHC AND FASER $\nu 2$

number of τ events at the i th bin

$$
\begin{aligned}
& \quad \begin{array}{l}
B_{i}^{J}=\epsilon_{\tau} N_{W} \int_{E_{\min }^{i}}^{E_{\max }^{i}} \int_{m_{\tau}} \int_{E_{\tau}}\left[F_{\nu_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\nu_{\tau}+\text { nucleus } \rightarrow \tau+X\right)+\right. \\
\left.F_{\bar{\nu}_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\bar{\nu}_{\tau}+\text { nucleus } \rightarrow \tau^{+}+X\right)\right] f\left(E_{\tau}^{\prime}, E_{\tau}\right) d E_{\nu} d E_{\tau} d E_{\tau}^{\prime}, \\
\chi_{\text {rel }}^{2}=\sum_{i}\left[\frac{\left[(1+f) B_{i}^{\text {true }}-N_{i}^{J}\right]^{2}}{B_{i}^{\text {true }}}+\frac{f^{2}}{\sigma_{\eta}^{2}}\right]
\end{array},
\end{aligned}
$$

Simulator	bin limits in GeV					$\chi_{\text {rel }}^{2}$
	<50	$50-100$	$100-500$	$500-1000$	$1000<$	
Pythia8 (Hard)	0.9	1.8	8.1	9.7	4.8	0.0
DPMJET 3.2017	1.5	3.1	16.2	23.3	14.5	43.7
SIBYLL 2.3c	0.7	1.1	3.7	3.1	0.7	9.6

Kling, "Forward Neutrino fluxes at the LHC," PRD 104 (21) 11, 113008

CHARACTERISTICS OF FASER ν, SND@LHC AND FASER $\nu 2$

number of τ events at the i th bin

$$
\begin{aligned}
& \quad \begin{array}{l}
B_{i}^{J}=\epsilon_{\tau} N_{W} \int_{E_{\min }^{i}}^{E_{\text {max }}^{i}} \int_{m_{\tau}} \int_{E_{\tau}}\left[F_{\nu_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\nu_{\tau}+\text { nucleus } \rightarrow \tau+X\right)+\right. \\
\left.F_{\bar{\nu}_{\tau}}^{J}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\bar{\nu}_{\tau}+\text { nucleus } \rightarrow \tau^{+}+X\right)\right] f\left(E_{\tau}^{\prime}, E_{\tau}\right) d E_{\nu} d E_{\tau} d E_{\tau}^{\prime}, \\
\chi_{\text {rel }}^{2}=\sum_{i}\left[\frac{\left[(1+f) B_{i}^{\text {true }}-N_{i}^{J}\right]^{2}}{B_{i}^{\text {true }}}+\frac{f^{2}}{\sigma_{\eta}^{2}}\right]
\end{array}, l
\end{aligned}
$$

Simulator	bin limits in GeV					2
	<50	$50-100$	$100-500$	$500-1000$	$1000<$	
Pythia8 (Hard)	0.9	1.8	8.1	9.7	4.8	0.0
DPMJET 3.2017	1.5	3.1	16.2	23.3	14.5	43.7
SIBYLL 2.3c	0.7	1.1	3.7	3.1	0.7	9.6

By end of run III (2024), FASER v will determine the tau neutrino spectrum.

Prediction of New physics for the tau excess

Saturating the bounds								$\nu_{e}+$ nucleus $\rightarrow \tau+X$	
Detector	$B r\left(\pi^{+} \rightarrow \nu_{\tau} \mu^{+}\right)$	$B r\left(\pi^{+} \rightarrow \bar{\nu}_{\tau} \mu^{+}\right)$	G_{e}	SM					
SND@LHC	1.0	0.9	0.003	6.6					
FASER ν	4.9	4.3	0.027	25.3					
FASER $\nu 3.6$	1125.9	938.0	9.6	3403.3					

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

Spectra of $\tau+\bar{\tau}$ produced at FASER ν normalized to 1.

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

$$
\pi^{+} \rightarrow \mu^{+} \nu_{\tau}
$$

$$
\begin{gathered}
\mathcal{N}_{s}^{i}=\epsilon_{\tau} N_{W} B r\left(\pi^{+} \rightarrow \mu^{+} \nu_{\tau}\right) \int_{E_{\min }^{i}}^{E_{m a x}^{i}} \int_{m_{\tau}} \int_{E_{\tau}}\left[F_{\nu_{\mu}}^{\pi}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\nu_{\tau}+\text { nucleus } \rightarrow \tau+X\right)+\right. \\
\left.F_{\bar{\nu}_{\mu}}^{\pi}\left(E_{\nu}\right) \frac{d \sigma_{C C}}{d E_{\tau}}\left(\bar{\nu}_{\tau}+\text { nucleus } \rightarrow \tau^{+}+X\right)\right] f\left(E_{\tau}^{\prime}, E_{\tau}\right) d E_{\nu} d E_{\tau} d E_{\tau}^{\prime} \\
\text { Prediction of SM for neutrino flux from the pion decay }
\end{gathered}
$$

$$
N_{i}^{o b s}=B_{i}+\mathcal{N}_{s}^{i}
$$

$$
\begin{aligned}
& \chi^{2}=\sum_{i}\left[\frac{\left(B_{i}(1+\eta)-N_{i}^{o b s}\right)^{2}}{B_{i}}+\frac{\eta^{2}}{\sigma_{\eta}^{2}}\right] \\
& \sigma_{\eta}=15 \%
\end{aligned}
$$

Binning schemes at FASER ~ 2

(1) no binning;
(2) coarse binning with bins divided as
$E_{\tau}<50 \mathrm{GeV}$,
$50 \mathrm{GeV}<E_{\tau}<100 \mathrm{GeV}, 100 \mathrm{GeV}<E_{\tau}<500 \mathrm{GeV}, 500 \mathrm{GeV}<E_{\tau}<1 \mathrm{TeV}$ and $1 \mathrm{TeV}<E_{\tau}$;
(3) fine binning with three bins at each energy decade.

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

S. Ansarifard and YF, "Excess of Tau events at SND@LHC, FASERv and FASERv2," arXiv:2112.08799

Summary and Conclusions

- We have built three viable BSMs for tau excess at forward experiments leading to
(1) $\pi^{+} \rightarrow \mu^{+} \nu_{\tau} ;(2) \pi^{+} \rightarrow \mu^{+} \bar{\nu}_{\tau}$ (3) $\nu_{e}+$ nucleus $\rightarrow \tau+X$.
- SND@LHC and FASERv cannot improve the bounds but can significantly reduce the uncertainty in the SM prediction for the tau events.
- FASERv2 can probe the new physics by looking for tau excess.
- Reconstructing the energy spectrum of detected tau (binning the data) can significantly enhance the potential of FASERv2 to probe new physics.

[^0]: PiENu Collaboration, A. Aguilar-Arevalo et al., Phys. Rev.

