

Radiative Decay of sub-GeV Supersymmetric Neutralinos from Light Mesons

in collaboration with H. Dreiner, S. Nangia and Z. S. Wang

4th Forward Physics Facility Meeting

Dominik Köhler Bethe Center for Theoretical Physics 31st January 2022

- Neutralinos in RPV MSSM
 - Decay of light Neutralinos
- Simulation of Neutralino Spectrum & Decay
- Benchmarks Scenarios
 - Results
- Conclusion

Outline

Let There Be Light...Neutralinos

- Typically, robust mass bounds on SUSY spectrum: \mathcal{O} (few 100 GeV) – \mathcal{O} (few TeV)
- One interesting exception: Bino-like lightest neutralino $\tilde{\chi}_1^0$ -> can evade all collider mass limits!

Cosmology: Dark matter bounds would imply: $M_{\tilde{\chi}_1^0} \geq \mathcal{O}(3 - 20 \text{ GeV}) \rightarrow \text{unstable } \tilde{\chi}_1^0 \text{ can escape this too!}$

[arXiv:0707.1425]

RPV-SUSY in (Very) Short

- Minimal SUSY superpotential: $W_{\rm MSSM} + W_{\rm BNV} + W_{\rm LNV}$ $W_{\text{LNV}} = \frac{1}{2} \lambda^{ijk} L_i L_j \bar{E}_k + \lambda^{'ijk} L_i Q_j \bar{D}_k + \kappa^i H_u L_i \quad -> \text{RPV terms}$ $W_{\rm BNV} = \frac{1}{2} \lambda^{'' i j k} \bar{U}_i \bar{D}_j \bar{D}_k$
- RPV usually put to o in MSSM to protect proton! But not necessary! Can protect proton in other ways.
- RPV is equally well-motivated and changes SUSY pheno drastically!

->Most interesting for us, LSP no longer stable: $\tilde{\chi}_1^0$ can be very light, and long-lived!

• The typical $\tilde{\chi}_1^0$ in RPV decays at tree-level:

LQD: e.g., $\tilde{\chi}_{1}^{0} \to M^{+} + l^{-}$ [arXiv:2008.07539] LLE: e.g., $\tilde{\chi}_{1}^{0} \to l^{+} + l^{-} + \nu$

• But, if very light, kinematics/dynamic suppression may only allow loop-level mode: $\tilde{\chi}_1^0 \rightarrow \gamma + \nu$

Light(-est $\tilde{\chi}_1^0$) means Photons!

• Single photon signature:

[arXiv:2011.04751] & thanks to Felix Kling!

-> See as energy deposit in EM calorimeter: Pre-shower station helps identify photon

- -> BG1: µ Bremsstrahlung FASER muon veto
- -> BG2: ν cc interactions in detector producing γ with ~ $\mathcal{O}(10)$ charged tracks

Single Photons at FASER

- Production of Neutralino in light meson decays
- Light, long-lived -> boosted γ in far-forward region -> FASER, FASER2 ideal

-> can reject BG with high efficiency!!

Simulation with FORESEE

- Forward spectra of SM mesons available at hand
- Light mesons decay according to $N_{M\tilde{\chi}_1^0}^{\text{proc}}$
- Light particles inherit in forward direction: Contains momentum & angular distribution of produced Neutralinos
- Simulate Neutralino decay via model-(in)dependent decay lengths
- Adjust the detector geometry, the search type & cuts fitting for FASER and FASER2:

Collider	$\ \ {\rm Luminosity} \ {\cal L}$	Energy	Distance L	Detector Length Δ	Detector Radius R
FASER, LHC	$150 {\rm ~fb^{-1}}$	$14 { m TeV}$	480 m	1.5 m	10 cm
FASER 2, HL-LHC	3000 fb^{-1}	$14 { m TeV}$	480 m	5 m	1 m

[arXiv:2105.07077] & thanks to Felix Kling and Sebastian Trojanowski!

$$\int_{M}^{d} = N_{M} \tau_{M} \Gamma(M_{jk}^{(*)} \to \tilde{\chi}_{1}^{0} + l_{i})$$

Benchmark Scenarios

Scenario	$\mathbf{M}_{ ilde{\chi}_{1}^{0}}$	Production $\left(\lambda_{ijk}^{\mathrm{P}}\right)$	Decay $\left(\lambda_{ijj}^{\mathrm{D}}\right)$	Current Constraints
B 1	$30{ m MeV}$	$\lambda_{211}' \left(M = \pi^{\pm}, \pi^0 \right)$	λ'_{333}	$\lambda'_{211} < 0.59 \left(\frac{m_{\tilde{d}_R}}{1 \text{TeV}}\right), \lambda'_{333} < 1.04$
$\mathbf{B2}$	$200{ m MeV}$	$\lambda_{112}'\left(M = K^{\pm}, K_{L/S}^{0}\right)$	λ_{322}	$\lambda_{112}' < 0.21 \left(\frac{m_{\tilde{s}_R}}{1 \mathrm{TeV}}\right), \lambda_{322} < 0.7 \left(\frac{m_{\tilde{\mu}_R}}{1 \mathrm{TeV}}\right)$
B3	$500{ m MeV}$	$\lambda_{222}' \left(M = D_S^{\pm} \right)$	λ'_{222}	$\lambda_{222}' < 1.12$

- Scenarios can probe different couplings and mass regions • Assume RPV coupling for both production and decay
- FASER can explore open parameter space for RPV-SUSY

- Can probe very light Neutralinos
- Production: λ'_{211} (LQD 211)
- Decay: λ'_{333} (LQD 333)

 $\pi^{\pm}, \pi^0 \to \tilde{\chi}_1^0 + X$

- Probe existing constraints for wide mass range
- Production: λ'_{112} (LQD 112)
- Decay: λ_{322} (LLE 322)

 $K^{\pm}, K^0_{\mathrm{L/S}} \to \tilde{\chi}^0_1 + X$

- Neutralino can be produced and decay via same coupling
- Production/Decay: λ'_{222} (LQD 222)

 $D_{\rm S}^{\pm} \rightarrow \tilde{\chi}_1^0 + \mu^{\pm}$

Conclusion & Outlook

- RPV SUSY models provide a possibility of a light neutralino can be searched in Far Forward Detectors
- New search via radiative decay: $\gamma + \nu$
- FASER can already exceed current (collider) bounds on RPV SUSY • FASER2 can probe even a wider range of parameter space for a variety of models