Searching for Light Dark Matter at the Forward Physics Facility

Brian Batell University of Pittsburgh

with J. Feng, M. Fieg, A. Ismail, F. Kling, R. M. Abraham, S. Trojanowski arXiv: 2101.10338, 2107.00666, 2111.10343

4th Forward Physics Facility Meeting 1/31/2022 - 2/1/2022

Motivation: Light Thermal Relic Dark Matter

- Light dark sectors provide an interesting framework for dark matter
- Relic abundance generated via thermal freeze-out
- Extension of the WIMP below Lee-Weinberg bound

[Boehm, Fayet]
[Pospelov, Ritz, Voloshin]
[Feng, Kumar]

Dark Matter Mass Range

- Direct DM annihilation to SM leads to predictive targets for experiment
- Same interaction governs DM annihilation and laboratory DM production

Dark Matter Scattering at the Forward Physics Facility

[BB, Feng, Feig, Ismail, Kling, Abraham, Trojanowski] [2101.10338, 2107.00666, 2111.10343]

[See also Kelly, Kling, Tuckler, Zhang '21]

- Along with dark matter scattering, dark sector models can lead to a variety of additional phenomena and signatures at the Forward Physics Facility, e.g.,
 - LLP decays of the mediator at FASER(2) [Feng,Galon,Kling,Trojanowski '17]
 - Enhanced neutrino production [Kling '20]
 - Modified neutrino scattering rates

FLArE — Forward Liquid Argon Detector

See talk by Jianming Bian

[BB, Feng, Trojanowski - 2101.10338]

Proposed Liquid Argon Time Projection Chamber at Forward Physics Facility

- Liquid argon medium + uniform electric field to transport ionization tracks
- PMTs collect scintillation light, providing event time information
- Wire planes detect drift electrons, providing spatial and kinematic information
- Energy thresholds down to 30 MeV, angular resolution down to 10 MeV
- Liquid Krypton option also being considered
- Consider two detector options:
 - FLArE-10:10-ton scale; Im x Im x 7m volume
 - FLArE-100: 100-ton scale; 1.6 m x 1.6 m x 30 m volume

Neutrino backgrounds discriminated with kinematic and topological cuts

LArTPC timing capabilities critical in mitigating muon-induced backgrounds

DM scattering search can also potentially be done in future emulsion detectors, such as FASER ν 2, Advanced-SND

Vector portal dark matter

$$\mathcal{L} \supset -\frac{1}{4}F'_{\mu\nu}F^{'\mu\nu} + \frac{1}{2}m_{A'}^2A'_{\mu}A^{'\mu} + A'_{\mu}(\varepsilon e J_{EM}^{\mu} + g_D J_{\chi}^{\mu}) \qquad J_{\chi}^{\mu} = \begin{cases} i\chi^* \overleftrightarrow{\partial_{\mu}}\chi \quad \text{(complex scalar DM)} \\ \frac{1}{2}\overline{\chi}\gamma^{\mu}\gamma^5\chi \quad \text{(Majorana fermion DM)} \end{cases}$$

- Simple, well motivated, popular dark sector model
- Dark photon couples to charge and mediates interactions between DM and SM
- 4 new parameters $\,m_\chi, m_{A'}, lpha_D, \epsilon\,$
- Thermal target:

$$\langle \sigma v \rangle \sim \frac{\epsilon^2 \alpha_D \alpha m_\chi^2}{m_V^4} \sim \frac{y^2}{m_\chi^2}$$

$$y \equiv \epsilon^2 \alpha_D (m_\chi / m_{A'})^4$$

Observed DM relic abundance predicted along this line

Hadrophilic Dark Sector

[BB, Feng, Feig, Ismail, Kling, Abraham, Trojanowski] [See also Boyarsky et al, 2104.09688]

- LHC is pp collider particularly sensitive to hadrophilic mediators
- We consider two models for concreteness:
 - 1. Gauged baryon number $U(1)_R$
 - Minimal hadrophilic mediator (all couplings to leptons are suppressed)
 - Gauge anomalies lead to important bounds from flavor changing meson decays

[Dror, Lasenby, Pospelov]

- 2. Gauged $B-3L_{\tau}$, $U(1)_{B-3\tau}$
 - Anomaly free, suppressed couplings to electrons and muons
 - Important bounds from neutrino NSI [Han, Liao, Liu, Marfatia '19; Heeck '19]

$$\mathcal{L} \supset -\frac{1}{4}V_{\mu\nu}V^{\mu\nu} + \frac{1}{2}m_V^2V_{\mu}V^{\mu} + V_{\mu}(J_{\mathrm{SM}}^{\mu} + g_VQ_{\chi}J_{\chi}^{\mu})$$

$$J_{\mathrm{SM}}^{\mu} = g_V[J_B^{\mu} - 3x(\overline{\tau}\gamma^{\mu}\tau + \overline{\nu}_{\tau}\gamma^{\mu}P_L\nu_{\tau})] + \varepsilon e J_{\mathrm{EM}}^{\mu}$$

$$J_{\chi}^{\mu} = \begin{cases} i\chi^* \overleftrightarrow{\partial_{\mu}}\chi \quad \text{(complex scalar DM)} \\ \frac{1}{2}\overline{\chi}\gamma^{\mu}\gamma^5\chi \quad \text{(Majorana fermion DM)} \end{cases}$$

- Predictive dark matter thermal targets exist
- Several additional interesting signatures predicted FPF experiments

Production of the DM beam

Proton bremsstrahlung

Drell-Yan

Detection of DM via scattering

DM-electron elastic scattering

DM-nucleon elastic scattering

Deep Inelastic scattering

FPF detector sensitivities to vector portal dark matter

FPF detector sensitivities to hadrophilic dark sectors

Outlook

- FASER and FASER ν are embarking on an exciting physics program exploiting the large forward pp cross section at the LHC.
- One interesting target for these experiments is light sub-GeV dark matter and dark sectors.
- The FLArE LArTPC detector can probe thermal relic dark matter in both the minimal vector portal DM model and hadrophilic models over broad mass range.
- Along with the search for dark matter scattering, light dark sectors predict a range of other interesting signatures (LLP decay, modified neutrino production and scattering).

Here's looking forward to dark matter at the FPF!