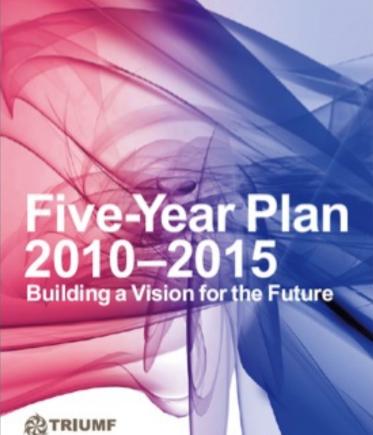
Subatomic (Particle) Physics in Canada

- The Canadian particle physics community
- Our subatomic physics facilities
- Our particle physics program
- Connections with the international community

William Trischuk Director, IPP University of Toronto November 26, 2010

What is the Institute of Particle Physics

- Founded in forty years ago to:
 - Promote and coordinate particle physics research in Canada
 - * Operate a Research Scientist programme
 - * Articulate particle physics priorities in Canada
 - * Optimise Canadian participation in international collaborations
 - * Expose young Canadians to the opportunities in particle physics
- Operates as a non-profit corporation owned by institutional members
 - Director & Council responsible for scientific programme
 - Board of Trustees have legal & financial responsibility
- Founded as a foil for TRIUMF's (original) nuclear physics mission
- Partnering with all Canadian stakeholders in particle physics


The Canadian Particle Physics Community

- 190 researchers from 25 Canadian institutions
- 14 institutional members of the IPP:
 - Alberta, Carleton, McGill, Montreal, Perimeter, Queens, Regina, Simon Fraser, Toronto, TRIUMF, UBC, Victoria, Western & York
- Membership consists of
 - 120 experimentalists (ATLAS, T2K, SNOLAB, smaller experiments)
 - 70 theorists (phenomenology, string theory, formal theory)

TRIUMF

- National lab for subatomic physics
- Canada's steward for accelerator physics
- Operates world's largest cyclotron and suite of post-production radioactive beam accelerators
- Have a growing SRF group
 - Building a 1.3 GHz electron linac
 - Funding recently approved
 - Exploring ILC and CERN/SPL contributions
- Hosts Canada's LCG Tier1 centre
- Detector expertise (BaBar, ATLAS, T2K)

• Funded in five-year cycles, now secure through 2015

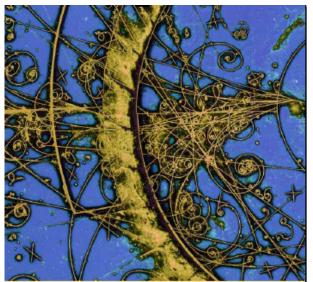
SNOLAB

- Initial home of SNO experiment
- Cleanroom conditions, at -2000 m
- Expanded lab facilities over the last five years
 - 3-fold increase in volume
 - 4-fold increase in floor space
- Science includes dark matter searches
 - SuperCDMS using solid state detectors
 - PICASSO liquid droplet dark matter search 🍟 💕
 - DEAP/CLEAN dark matter search with Liquid Argon 🏶 F
- Neutrino-less double beta decay searches
 - EXO using gaseous Xenon 🌞
 - SNO+ with Nd-loaded liquid scintillator $rac{W}{2}$
- Supernova searches
 - HALO using Lead and SNO neutral current detectors 🌳

Defining the Canadian Particle Physics Program

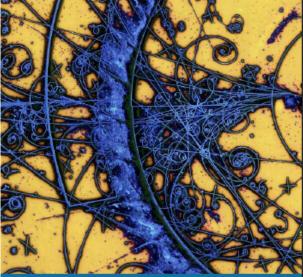
- IPP projects are vetted by Council to satisfy the following criteria:
 - 0. Have potential to answer crucial particle physics question(s);
 - 1. Involve a diverse group of Canadian particle physics researchers;
 - Have financial support for development/construction/operation or exploitation of a 'full experiment' from Canadian funding agency, not just R&D money;
 - 3. Be a fully approved part of the experimental programme at the host lab or in the host country;
 - Complement existing parts of the IPP programme. The Canadian particle physics community is sufficiently small that we are better served by focused efforts on one experiment in each field/area/accelerator.

The Current IPP Programme

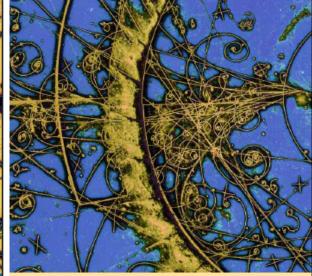

	Data-taking		Investigators	
Experiment	Start	End	IPP Scientists	Investigators
ATLAS	2008 (1996)	2020?	3.5	43
BaBar	2000 (1998)	2008	1.5	8
CDF	1992	2011?		3
DEAP/CLEAN	2010 (2008)	2015+		10
EXO-WIPP	2008 (2007)	2010?		8
$\pi \to e$	2008	2011		8
PICASSO	2004 (2006)	2010+		10
SNO+	2012 (2008)	2015+		11
T2K	2009 (2004)	2015+	2.5	19
ZEUS	1992 (1984)	2007	0.5	3

• Is the IPP programme serving the community?

- Yes, \geq 100 experimental FTEs (120 experimental faculty)
- We are in the final stages of transition from


SNO \Rightarrow Picasso, SNO+, DEAP & ZEUS, CDF, BaBar \Rightarrow ATLAS, T2K

Canadian Subatomic Physics Long Range Plan


Perspectives on Subatomic Physics in Canada 2006-2016

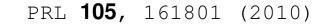
> REPORT OF THE NSERC LONG-RANGE PLANNING COMMITTEE

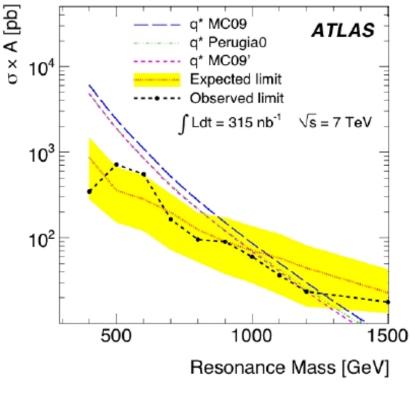
Exploring the Subatomic Realm

> SUBATOMIC PHYSICS IN CANADA

Perspectives sur la physique subatomique au Canada

2006-2016


RAPPORT DU COMITÉ DE PLANIFICATION À LONG TERME DU CRSNG


Status of our Long Range Plan Projects

- ATLAS: Explore the energy frontier at the LHC
 - Detector contributions complete, first data coming in
 - 40 faculty and 80 postdocs/students maintaining detector and studying the data
- SNOLAB: Infrastructure complete
 - SNO+ and DEAP/CLEAN have secured capital funding
 - First measurements in the next few years
- T2K: First neutrinos seen
 - Canadian detector contributions being commissioned
 - Canadians leading physics studies
- TRIUMF/ISAC: Exploiting RIB beams
 - eLINAC capital funding secured and design being completed
- Future: Participating in sLHC and ILC studies
 - TRIUMF SRF expertise will be crucial either way
 - Canadians prepared to contribute strongly to future HEP projects

ATLAS

- 4-5% of ATLAS collaboration
- Incredible start to data-taking
 - Luminosity growing by order of magnitude every month
 - First physics (surpassing Tevatron) emerging
 - Canadians active in all areas
 - Tier1 center active in re-processings
- ATLAS (and ATLAS-Canada) ready for exploit expanding datasets
- TRIUMF collaborating on sLHC injectors
- Canadians leading ATLAS upgrade R&D

August 2010

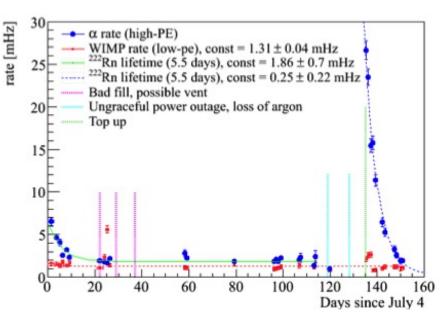
• ATLAS-Canada continues to grow (1/2 of eHEP faculty hired in Canada since 2000)

Major commitment of 1/3 of the Canadian particle physics community

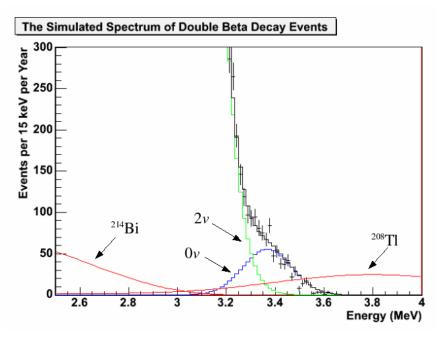
- Canadians were the first foreign partners to sign original proposal
- Made major contributions to ND280
 - FGD, TPC
 - All modules now installed a JPARC

November 2008

- T2K-Canada group:
 - 15 Faculty/scientists and 18 students/postdocs
- Canadians still largest non-Japanese group on T2K


- Neutrino beamline commissioning with OTR
 - Beams seen in spring 2009
- Canadians leading ND280 physics program
- PhD thesis on cross-section normalisation between near and far detector

- DEAP uses delayed signal in Liquid Argon to distinguish dark matter candidates from e/γ backgrounds
- 7 kg prototype is operating at SNOLAB
- 3 · 10⁻⁸ photon rejection demonstrated (goal 10⁻⁹)
- Seeing radon on surface of acrylic vessel
- Now working to improve cleanliness of surfaces and purity of detector elements
- Funding for 3600 kg DEAP now secured



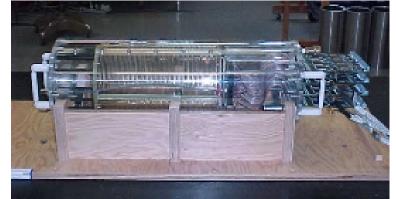
• Both should be taking data by 2012

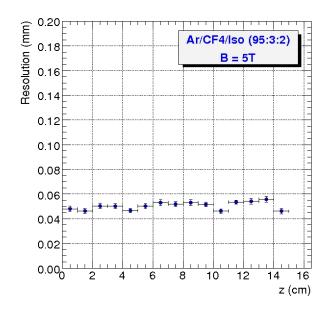
SNO+

- ¹⁵⁰Nd loaded liquid scintillator to search for neutrinoless double beta decay
- Significant engineering required to *holddown* buoyant acrylic vessel
- Have demonstrated transparency of 0.1% Nd suspension in scintillator
- Investigating isotope separation to increase active target mass without compromising transparency

- Signal from 2 years running (natural *Nd*)
- Capital funding recently began to flow 2-year construction underway
- Expect to fill SNO AV with liquid scintillator in early 2012

PICASSO


- Dark matter one of the compelling mysteries
- Search with super-heated droplet technology
- Low activity detector materials are key
- PICASSO steadily increasing mass
- 2.6 kg mass now in SNO service cavern
- Recently discovered a time-correlation that significantly improved alpha/WIMP discrimination
- As a result re-established world's best spindependent limits



- At the same time should establish viability of bigger system
- Cooperating with COUPP (Chicago/Fermilab) on next generation

Linear Colliders

- World-wide consensus a lepton collider is the next machine to build
- SRF technology chosen for ILC: 2004
- Costed baseline made public: 2007
- Canadians are world leaders in
 - Resistive plate TPC readout
 - Canadian idea developing in Europe
 - Calorimeter design and prototyping
- Both efforts have been used in the T2K near detector
- TRIUMF investigating links with Canadian SRF vendor and building a machine based on ILC/SRF cavities

- With flat funding we have not *properly* supported these efforts
- Exploring future directions in planning exercise now underway

The Future of the Canadian Programme

	Timelin		
Experiment	Start	End	Investigators
ATLAS	2008 (1996)	2025++	45
T2K	2009 (2004)	2015+	20
PICASSO	2006 (2006)	2011+	10
SNO+	2012 (2008)	2015+	15
DEAP/CLEAN	2010 (2008)	2015+	10
SuperB	2015 (?)	2025	10
Linear Collider,	2018+ (2012)		20-30+

- ATLAS is centre-piece of collider physics in Canada
- Converging on SNOLAB experimental programme
- Continued involvement in 2 or 3 SNOLAB experiments
- Reap physics from T2K contributions
- Establish foundation for major commitment to next collider

North American Cooperation in Particle Physics

- Important Canadian contributions to BaBar and CDF
- Natural geographic partners
- In the context of FALC have begun discussing a North American cooperation agreement on high energy physics
- Have had a series meetings with Canadian proponents
 - Community: TRIUMF, SNOLAB, Perimeter, IPP
 - Agencies: NRC, NSERC, CFI, Industry ministry
- Suggested a list of possible topics of common interest:
 - SNOLAB/DUSEL experiments and R&D
 - ILC development and SRF R&D
 - Building a joint position on CERN relations
 - Next generation long baseline neutrino experiments (T2K/ProjectX)
 - Facilitating movement of researchers among North American labs

Cooperation with Japan

- Natural trans-pacific ties between TRIUMF and Japanese labs
- Build on serendipitous cooperation with systematic contributions
 - T2K is a prime example of this
 - TRIUMF/RIKEN signed MOU
- Half-day symposium hosted by Canadian embassy in Tokyo
 - July 2009 in conjunction with JPARC opening

Japan Particle Accelerator Science Symposium

Japan - Canada Collaboration and Internationalization in Particle Accelerator Science

Hosted by Co-hosted by

In Cooperation with

Embassy of Canada in Japan National Laboratory for Particle and Nuclear Physics (TRIUMF) Institute of Particle Physics (IPP) High Energy Accelerator Research Organization (KEK)

- Presentations by Coulombe, Suzuki, Lockyer, Yano and Karlen
- Panel discussion including Vogt, Nagamiya, Orr and Hayano
- Third in series was held in Vancouver in late October

Cooperation with CERN

- Canadians were 20% of the OPAL collaboration
- Among the first to commit to an LHC machine contribution (1995)
- Have a strong contingent on ATLAS
- Established Canadian participation in CERN summer student programme
- Supporting at least one teacher to attend next summer's CERN teacher program
- Contributions to LHC/ATLAS are highly visible in Canada
- Contributed to SPL cavity R&D and PS2 beam dynamics studies
 - looking for other ways to contribute to LHC upgrades
- Engaging in discussion of CERN's geographic enlargement

Summary

- Canadian particle physicists have had a major impact on the physics of BaBar, CDF, SNO, ZEUS our on-going projects
- Already starting to see the fruits of our investments in ATLAS, T2K and PICASSO
- A number of projects are on the horizon
 - Launch of the scientific programme at SNOLAB:
 - * DEAP/CLEAN and SNO+
 - Expand Canadian contributions to a linear collider (machine + dets)
- Significant community renewal going smoothly
 - Half of the particle physics faculty hired in the last ten years
- Restarting our Long Range Planing process conclusions in mid-2011
- Challenge: 30-40% increase in research activity while operating funding has remained constant