

Optical studies of defect centers formed in MCz-Si and FZ-Si by high fluence neutron irradiation

Barbara Surma, Paweł Kamiński, Artur Wnuk and Roman Kozłowski

Institute of Electronic Materials Technology, 01-919 Warszawa, ul. Wólczyńska 133, Poland

Topics

Neutron-irradiated samples: Part 1

- Photoluminescence - native defects, $(I_3 \text{ and } I_4 \text{ interstitial complexes})$; thermal dissociation of defects; correlation between I_3 and I_4 ? Part 2

- Infrared absorption - divacancies; introduction rate

Why photoluminescence?

- The defects formed during the heat treatment in high purity n-irradiated Si are mainly related to defects formed by the agglomerates of vacancies or silicon interstitials. The excitons are bound to these defects by the local field. Most of them recombine with the emission of the light and new emission lines are observed in the photoluminescence spectrum.
- Low temperautre PL is a usefull tool for monitoring these defects

The main defects in *n*-irradiated high purity Si monitored by LTPL technique

- <u>tri-interstitials silicon line W (I₃) (1.018eV)</u>, EPR signal B5 from I_3^+ ; donor-like (0/+) Ev+0.1eV; DLTS Ec-0.075 may be related to W center ; Cz-Si and FZ-Si
- •<u>tetra-interstitials silicon line 1.039eV (I4</u>), EPR defect B3 (I⁺₄), electric level Ev+0.29eV (DLTS) ; Cz-Si and FZ-Si
- •hexavacansy V_6 line 1.108 eV ; Ec-0.04eV acceptor level ; in FZ-Si
- line 1.097 eV in Cz-Si ; related to oxygen atoms;

Parameters of the samples

- n- irradiated FZ-Si and MCz-Si (MCz <100>, 1kΩcm, 300 µm and 2-3mm thick ([Oi] = 5x10¹⁷ cm⁻³, [Cs] < 5x10¹⁵ cm⁻³, FZ 288µm and 3mm thick , 2kΩcm)
- Samples were irradiated to fluences of 10¹⁵ to 10¹⁶ cm⁻², 1 MeV equivalent neutrons at the TRIGA reactor in Ljubljana.
- all samples were chemically etched and refreshed before each PL measurement

Heat treatment parameters

Isochronal annealings:

- *1hour / nitrogen/ 80°C 477°C*
- - 0.5h/nitrogen/80°C(350K) 380°C(650K)

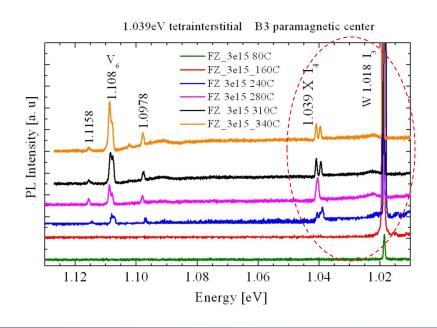
17th RD50 Workshop 17-19 Nov -2010 Experimental

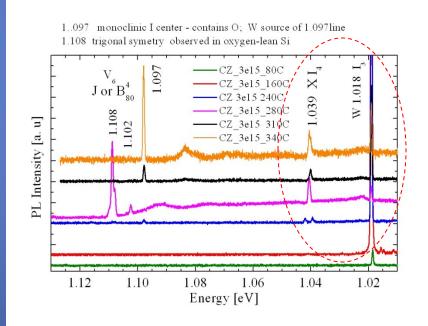
Photoluminescence

- Excitation 514 nm Ar laser line focused to 0.4micrometer. Excitation power 0.5W/mm²
- Double-grating monochromator dispersion 1.7nm. Spectral resolution 0.5meV at 1000nm
- Photomultiplier type R5509-72 (Hamamatsu) with InGaAsP cathode.
- Spectral range 1070nm 1700nm
- Signal collection lock-in technique
- Closed-cycle cooling system (15K)

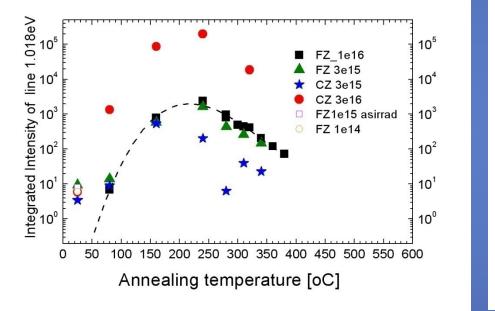
Absorption

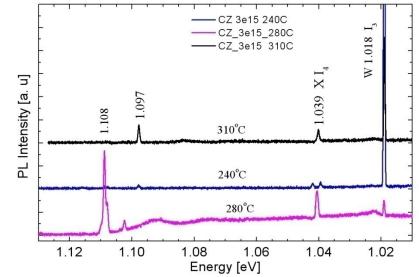
- Fourier spectrophotometer IFS 113v ; resolution 2cm⁻¹ spectral range 4000 cm⁻¹ 400 cm⁻¹ (2.5 μm 25 μm)
- Spectrophotometer Carry 500 resolution 1 nm; spectral range 1μm – 3 μm (monochromatic light)
- Closed-cycle cooling system (8K)

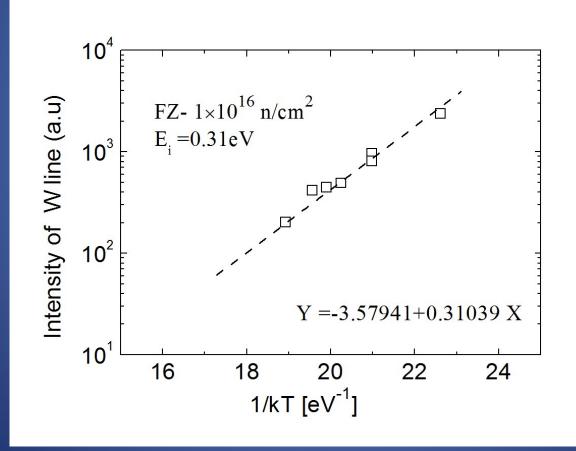


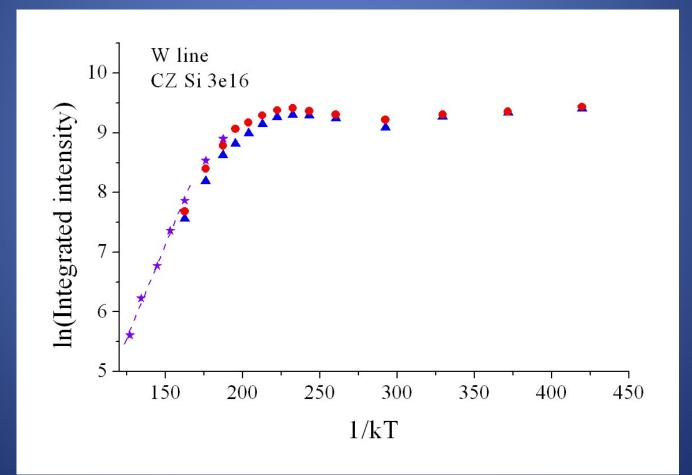

Photoluminescence

Two aspects: > study of W (I_3) line behaviors > is I_3 complex a precursor for the formation of I_4 complex ? (Decreasing of the intensity of the line W(I_3) (tri-interstitials) is followed by the appearance of new emission at 1.039eV (line I_4) related to the formation of tetra-interstitials)


PL emission at 18K for n-irradiated FZ-Si and MCz-Si (fluence 3x10¹⁵ n/cm²) vs. annealing temperature for isochronal annealing




178th RD50 Workshop 17-19 Nov -2010 Integrated intensity of W line vs. annealing temperature



The energy of quenching process for W line from Arrhenius plot was found to be 0.31 eV

Integrated Intensity for W line (1.018eV) vs the temperature of the sample

Fitting procedure

The best fitting was obtained for the following assumptions:

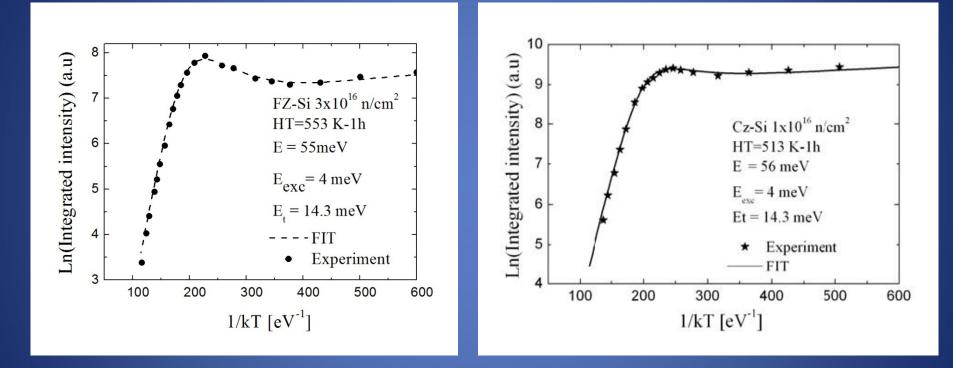
Excitons bound with tri-interstitial center (W line) dissociate with thermal energy E
Excitons bound with concurrence centers dissociate thermally with average energy E t (Et < E)
Excitation of the exciton bound to tri-interstitial center to excited state with energy E_{exc}

17th RD50 Workshop 17-19 Nov -2010 Theory

$$I(T) = I(O) / \left((1 + F_2) \times \left(1 + F_3 + C_1 \times T^{\frac{3}{2}} \exp(-E / kT) \right) \right)$$

$$F_{2} = C_{3} / \left(1 + C_{1} \times T^{\frac{3}{2}} \exp\left(-E_{t} / kT \right) \right)$$

$$F_{3} = C_{4} \times \exp\left(-E_{exc} / kT\right)$$


 F_2/C_3 – the fraction of concurrence centers that are not ionise so can capture the free excitons

 $C_1^*T^{3/2}$ – the effective density of band continuum states into which the ionisation occurs

C3 - the ratio of trapping cross section for excitons at trap E_t and sum of others traps.

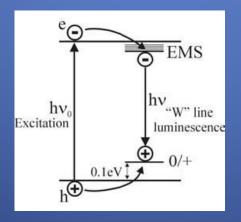
Fitting procedure for W line (1.018eV)

State of art of the knowledge about W line

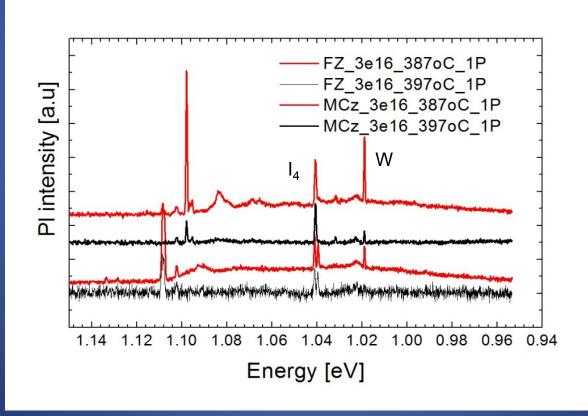
>W line - defect of trigonal symmetry (C_{3v})

>EPR – W line coincides with B5 defect in EPR being a triinterstitials I_3

Local density functional (LDF) theory calculation showed the defect to have a possible (0/+) donor level close to the VB Ev+0.1eV. (tightly bound hole and loosely bound electron)


D. Pierreux and A. Stesman Phys. Rev. B 71, (2005), 115204.

B. J, **Coomer** J. P. Goss, R. Jones, S. Osberg, and P. R. Briddon J. Phys.: Condens. Matter V13, (2001), L1-L7,


Our results

- **Taking band gap energy at 15K E**_g=1.1695eV
- -Energy distance of W line from $E_g : E_g h_{V_w} = 0.1513 eV$
- E_t=57meV for lightly bound species
- 153.1meV-57meV =96.1meV for tightly bound species
- Close to calculated 0.1 eV.

Are tri-interstisials (W) the precoursors for the formation of tetra-interstitials (I₄)?

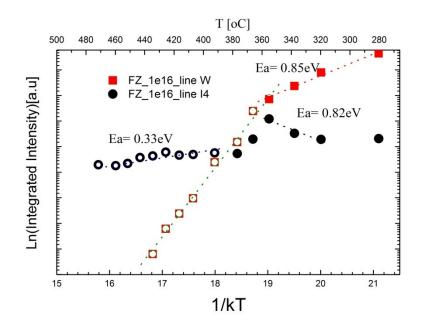
Theory

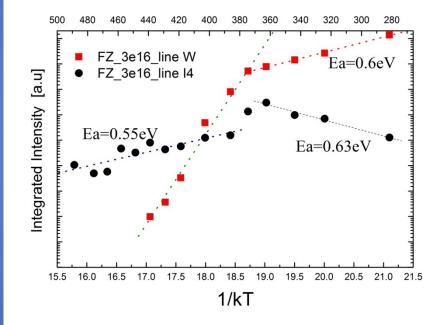
• The rate of the exciton capture by center *i* is equal:

• $P_i = \sigma_i N_i n_{ex} v_{ex}$

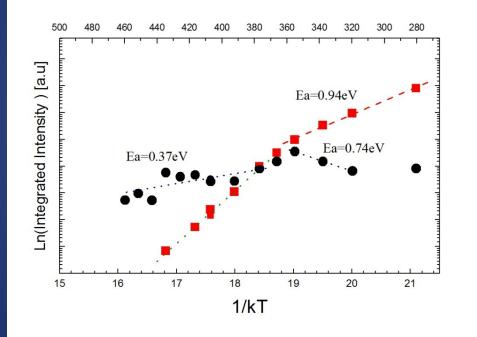
• where :

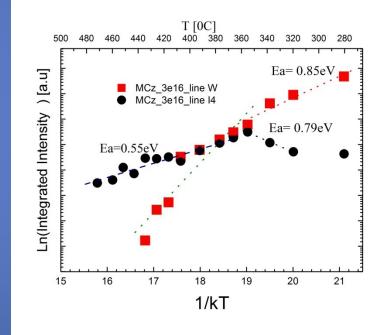
 σ_i – the capture radii of i-th centre v_{ex} – thermal velocity of excitons N_i – concentration of i-th centre n_{ex} – concentration of excitons




Theory

$$P_i / P_{total} = \sigma_i N_i n_{ex} v_{ex} / \sum_k \sigma_k N_k n_{ex} v_{ex}$$


Arrhenius plot for FZ-Si samples



Arrhenius plot for MCz-Si samples

Activation energy for diffusion for interstitials

- D_I=0.335*exp(1.86 eV/kT)
 - D. Maroudas and R. A./ Brown Appl Phys. Lett V62, (1993), 172s
- D_I=0.19*exp(1.58 eV/kT)

J. Tershof, Phys. Rev. Lett. V56, (1986), 632-635

D_I=0.72*exp(- 1.35 eV/kT)

F. H. Stillinger and T. A. Weber, Phys. Rev. B, 31, (1985), 5262-5271

• D_I=0.242exp(-0.937/kT)

T. Sinno, R. A. Brown, W. Von Ammon, E. Dornberg , Appl.Phys.Lett. V70(17) (1997).2250-2252

Activation energy for diffusion for vacancies

D_v=0.001exp(-0.457/kT)

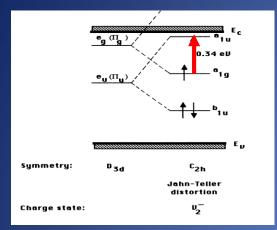
T. Sinno, R. A. Brown, W. Von Ammon, E. Dornberg , Appl.Phys.Lett. V70(17) (1997).2250-2252

Dv=1000exp(-2.838/kT)

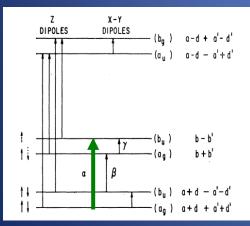
J. Vanhellemont Appl. Phys. Lett. 69. (1996), 4008-4010

Part II Absorption measurements

17th RD50 Workshop 17-19 Nov -2010 **Divacancies**


Neutron irradiation creates cluster damage and "point defect' damage and to a first approximation they behave independently of each other.

Assume that we can separate the damage into cluster damage and 'point defect' damage.


➤The point defects evolve and form the agglomerates of native defects or interact with impurities.

> Among the as-irradiated defects V_2 is one of the most important. V_2 can be formed inside and outside the clusters.

J. H Svensson et all PRB V36, 4192p, (1988-II)

I.J. Cheng et all PR V152, 761p, (1966) 17th RD50 Workshop 17-19 Nov -2010

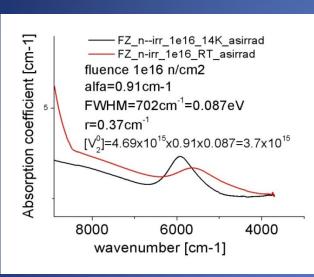
Divacancies

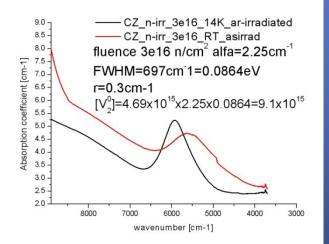
 $V_{2}^{+} + e^{-} \neq V_{2}^{0} \qquad E_{v} + 0.31 \text{ eV}$ $V_{2}^{0} + e^{-} \neq V_{2}^{-} \qquad E_{c} - 0.41 \text{ eV}$ $V_{2}^{-} + e^{-} \neq V_{2}^{2-} \qquad E_{c} - 0.23 \text{ eV}$

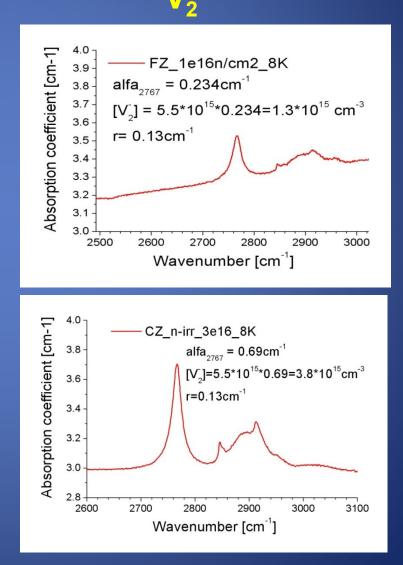
Infrared optical absorption: -peak at 0.31 eV ($3.9\mu m$) - transition from VB to V₂⁺ state -peak at 0.34eV ($3.6\mu m$)- intracenter transition in V₂⁻ charge state - peak at 0.69 eV ($1.8\mu m$) – intracenter transition in V₂⁰ charge state

Measurement conditions

- •In high purity n type silicon at room temperature V_2 are in neutral state V_2^0 . One can observe intra-center transition at 1.8µm
- •At low temperature under strong illumination V_2^0 are easily transformed to negatively charge state V_2^- (the case of Fourier IFS 113v spectrophotometer conditions) and we observe intra-center transition in V_2^- charge state • Cooling in darkness and illumination with monochromatic light does not change the charge state of V_2 and one can observed the intra-center transition at 1.8µm for V_2^0 (the case of Carry 500 spectrofotometer conditions)


The main Questions !


Do V_2^0 change the charge state under illumination into V_2^- state inside and outside the clusters?


Do the deformation field inside the clusters influences the position of the Fermi level under illumination ?

17th RD50 Workshop 17-19 Nov -2010 Absorption measurements V₂⁰ V₂⁻

Calculations

The concentration of V_2^0 (1.8μm) [N_{V2}] = 4.69*10¹⁵ * α Γ_{FWHM} [cm⁻³]

According to the rule

$$N \times f = 8,21 \times 10^{16} \frac{n}{(n^2 + 2)^2} \int \alpha (E_{hv}) dE_{hv}$$

Where :

- N concentration of defects [cm⁻³)
- f oscillatore strength
- n -refraction index
- α absorption coefficient (cm⁻¹)
- E_{hv} photon energy (eV)

Concentration of V_2^-

The concentration of V_2^- (3.6µm) [N_{V2}] = 5.5*10¹⁵ * α [cm⁻³]

G. Davies et all., PRB, V73, 165202,(2006)

Experimental results

Sample	Fluence cm ⁻²	[V ₂ ⁰] [cm ⁻³]	Introduction rate [cm ⁻¹]	[V ₂ -] [cm ⁻³]	Introduction rate [cm ⁻¹]
FZ	1*10 ¹⁶	3.7*10 ¹⁵	0.37	1.3*10 ¹⁵	0.13
MCz	1*10 ¹⁶	3.39*10 ¹⁵	0.34	-	-
FZ	3*10 ¹⁶	9.7*10 ¹⁵	0.32	-	-
MCz	3*10 ¹⁶	9.1*10 ¹⁵	0.3	3.8*10 ¹⁵	0.13

17th RD50 Workshop 17-19 Nov -2010 Conclusions

≻Low temperature photoluminescence measurements have been applied to studying selfinterstitial aggregates in MCz and FZ silicon irradiated with neutron fluences from 3x10¹⁵ to 3x10¹⁶ cm⁻² and subjected to isochronal annealing up 480°C

>It has bees stated that exciton is thermally bound to W center with energy of 57meV and from this the energy for tightly bound spices has been found to be around 96 meV. This value well coincides with theoretical prediction of (0/+) donor -like level at E_v +0.1eV.

Conclusions

≻The changes in the normalised photoluminescence intensity for tri- and tetra-interstitials with the annealing temperature were determined and the Arrhenius plots for the defects thermal stability were plotted

≻The increase of the 1.039 eV emission intensity was observed in the temperature range from 280 to 350°C

> The activation energy for increasing the 1.039 eV (I_4) line intensity was found to be nearly the same as that for decreasing the 1.018 eV (W line) intensity and was equal 0.75 +/- 0.15 eV.

>The annihilation of the tetra-interstitials was observed at a temperature higher than 350°C

17th RD50 Workshop 17-19 Nov -2010 Conclusions

>Infrared absorption measurements have been used for determination of divacancies concentrations in neutral (V₂⁰) and singly negative (V₂⁻) charge states in silicon irradiated with neutron fluences of 1*10¹⁶ and 3*10¹⁶ cm⁻² > The introduction rates of V₂⁰ and V₂⁻ are found to be around 0.3 cm⁻¹ and 0.13 cm⁻¹, respectively > Both for MCz and FZ Si, the concentration of V₂⁰ was found to be approximately tree times higher than that of V₂⁻ > There are two reasons that can explain the observed difference in the concentration of V₂⁰ and V₂⁻:

- the error in the values of the calibration factors,

the V₂⁰ located in clusters are fully transformed into V₂⁻.
≻The possible influence of the clusters can be cleared up by additional experiments using the electron irradiated material.

