New results on the annealing behaviour of the E4/E5-defect

E. Fretwurst¹ A. Junkes¹ C. Neubüser¹

¹Institute for Experimental Physics - Detectorlab University of Hamburg, Germany

17th RD50 meeting 2010, CERN 17-18.11.2010

What is the origin of high leakage current?

Crystal defects in the silicon bulk create leakage current

⇒ Combine microscopic and macroscopic measurements

DLTS measurements show defect concentrations...

... revealing the correlation of defects and LC

Impact of E4/E5 and E205a

- 55 % of the total LC anneals out during 80 °C annealing
- After annealing at 180 ℃ only 10 % of the LC is left

Annealing of crystal defects

- The E4/E5 defect anneals at 80 ℃
- E205a anneals between 140 ℃ to 200 ℃

$\overline{E4/E5}$ is one bistable configuration of V_3

Three silicon vacancies in two configurations

Planar configuration

2 acceptor levels E4 & E5

Four-fold configuration (ffc)

• 1 acceptor level E75

Change of configuration (recovery) possible by

- annealing at 80 °C ⇒ produces E75
- injection of high current ⇒ produces E4/E5

Materials & measuring techniques

Materials

MCz & FZ Neutron irradiated $\Phi_{eq} = 1 - 6 \times 10^{11}$

Capacitance/current-voltage characteristics (CV-IV)

Measurement of diode characteristics stabilised at 20 °C

⇒ Endcapacitance, depletion voltage and leakage current

Deep level transient spectroscopy (DLTS)

Measurement of capacitance transients due to emission of charge carriers

⇒ Defect concentrations

Can we make use of E4/E5 bistability

Bistability used to find origin of LC

If defect switched on/off LC should follow

DLTS after injection

Annealing procedure

- Isochronal annealing step
- ② Injection of current at 0 °C
- Isothermal annealing

Measurements: CV/IV, DLTS/TSC, charge capture

Correlation of LC and E4/E5

Direct correlation found

- Which mechanism leads to change of configuration?
- How much current do we need to inject?

Variation of the injected current

10 minutes injection:

- Saturation reached at 1 A
- Annealing effects very high at 2 A (≈15 W at 0 °C)

20 minutes injection:

No change of saturation value

I (A)	charge density $(s^{-1}cm^{-3})$	accumulated charge (cm $^{-3}$)
1	4.5×10^{17}	3.7×10^{21}
0.5	1.8×10^{16}	1.9×10^{21}

Variation of injection time

- LC not fully recovered even after 100 minutes at 100 mA
- Charge carrier density leads to change of configuration
- Charge need to overcome potentials in cluster defects

Speculation: cluster core shielded by potentials

⇒ High charge densities needed

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection

- Balls represent charge carriers
- Semi circles are charge trapping positions
- Black dots represent potential barriers
- Multi Ball represents high current injection
- With high injection also the shielded core can be reached

Summary & Outlook

Summary

- Correlation of E4/E5 with LC nicely seen
- Bistability used to recover LC
- Charge density important for recovery of LC

Outlook - Electrons or holes responsible?

- Red laser from front ⇒ electron injection
- Red laser from rear ⇒ hole injection
- Diode window allows 12 % of LC recovery

