Simulation of new P-type strip detectors with trench to enhance the charge multiplication effect in the ntype electrodes

G. Pellegrini, J. P. Balbuena, C. Fleta, P. Fernández-Martínez, D. Quirion, S. Hidalgo, D. Flores, M. Lozano Centro Nacional de Microelectrónica (IMB-CNM-CSIC)

> G. Casse, D. Forshaw Liverpool University

Work partially supported by RD50 collaboration

Introduction

Project: fabricate a p-type strip detector with small gain → Similar signal before and after irradiation

- Multiplication occurs at low bias voltage
- Gain should be limited between 2 and 10:
 - Avoid Crosstalk
 - Avoid exceeding the dynamic range of readout electronics
- Capacitance should not increase significantly
 - Higher capacitance → Higher noise

Technological proposals

- I. Trench filled with doped polysilicon along the centre of the strip pitch
 - A N⁺ contact is created into the silicon bulk that modifies the electric field in the collection region → multiplication

Technological proposals

II. P-type diffusion along the centre of the strip pitch

 Under reverse bias conditions, a high electric field region is created at the N+− P junction → multiplication

Simulation Model

Sentaurus ISE-TCAD

- Impact Ionization Model: Universty of Bolonia
- Irradiation trap model:

```
Acceptor; E=E_c+0.46 \text{ eV}; \quad \eta=0.9; \quad \sigma_e=5 \text{ x } 10^{-15}; \quad \sigma_h=5 \text{ x } 10^{-14} Acceptor; E=E_c+0.42 \text{ eV}; \quad \eta=1.613; \sigma_e=2 \text{ x } 10^{-15}; \quad \sigma_h=2 \text{ x } 10^{-14} Acceptor; E=E_c+0.10 \text{ eV}; \quad \eta=100; \quad \sigma_e=2 \text{ x } 10^{-15}; \quad \sigma_h=2.5 \text{ x } 10^{-15} Donor; E=E_c-0.36 \text{ eV}; \quad \eta=0.9; \quad \sigma_e=2.5 \text{ x } 10^{-14}; \quad \sigma_h=2.5 \text{ x } 10^{-15}
```


Simulation of the Electric Field

Simulation of the Electric Field

Curves at 500 V

Simulation of the Capacitance

Variation over the basic proposals

- I. P type diffusion, implanted through a trench filled with oxide, along the centre of the strip pitch
 - N+/ P-type diffusion junction creates a high electric field region →
 multiplication

Variation over the basic proposals

II. Large P-Type covering all the strip width

N+/ P-type diffusion junction creates a high electric field region →
 multiplication

Variation over the basic proposals

DRAWBACK: If N⁺ and P diffusions are performed with the same mask, a premature breakdown is expected due to the curvature of the junction

- N⁺ diffusion should overlap P diffusion
 - → One extra level of Mask
 - → Optimisation of the overlap size
- It should work after irradiation

Status of the Work: Fabrication

The fabrication run includes:

- Conventional Strip Detectors
- Poly Trench structures with different trench depths:
 - 5 µm
 - 10 µm
 - 50 µm
- Structures with small P layer along the center of the strip
- Devices with large P layer along the center of the strip
- Oxide filled trench structures with a
- P layer implanted through the trench:
 - 5 µm
 - 10 µm
 - 50 um

Fabrication: step 50 out of 80. **Doping trenches.**

Status of the Work: PAD Diodes

We have fabricated PAD diodes with a P layer diffused under the N+ diffusion

N+/ P-type diffusion junction creates a high electric field region →

✓ First Measurements: Gain ~2

Conclusions and Applications

- 1. We have shown several new designs to enhance the multiplication process.
- 2. If detector will work many tests must be done: uniformity, stability, reproducibility etc.....
- 3. A PAD detector with small gain has been fabricated following some of the procedures described in this work.
- 4. A run containing the discussed designs is fabricated for subsequent characterisation.
- 5. Test uniformity with test beam or laser with Alibava

Applications:

- Radiation Hard Detectors
- Tracking Detectors
- Charge multiplication permits the fabrication of thinner detectors

