

Data Lifecycle Activities

Distributed Database Operations Workshop November 16th 2010

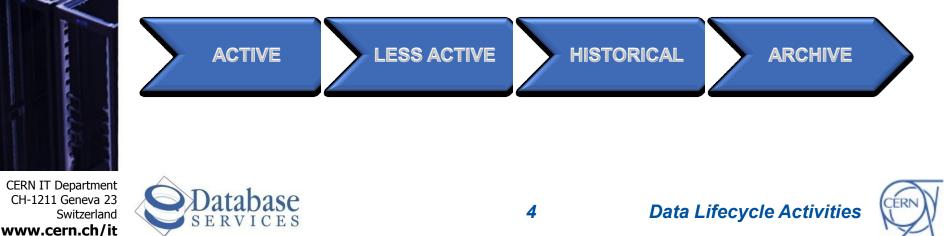
> Marcin Blaszczyk, IT-DB marcin.blaszczyk@cern.ch

Agenda

Outline

- Data/Information Lifecyle Management
- Motivations for DLM / ILM
- Techniques
- Examples
- Conclusions

"Information Lifecycle Management (ILM) is concerned with everything that happens to data during its lifetime,


"Data life cycle management (DLM) is a policy-based approach to managing the flow of an information system's data throughout its life cycle"

Data Lifecycle Management

- Main challenge:
 - Understand how data evolves
 - Determine how it grows
 - Monitor how its usage change
 - Decide how long it should survive
- General data flow model:

CFR

Department

Motivations for DLM

- Why Data Lifecycle Management?
 - Large amounts of data collected and stored for several years
 - Different requirements on performance and SLA can often be found for 'current' and 'old' data sets
 - To ease maintanace and reduce potential risk of managing very large data sets in the area of:
 - Administration
 - Performance
 - Cost
 - To keep track/identify no longer needed or redundant data

Motivations for DLM

- Data Life Cycle policies cannot be easily implemented from the DBA side only
 - Not all applications can be 'optimized' to fit into DLM policy
 - require data model change and application modification
 - It's ongoing effort
- Close collaboration with application developers and application owners is essential:
 - To reduce amount of data produced
 - To allow DB structure for implementing archiving
 - To define data availability agreements for online data and archive
 - To identify how to leverage Oracle features

CERN**IT** Department

No 'out of the box' solution available

- Attack the problem where possible
 - Applications
 - Oracle and DB features
 - HW architecture
- Application layer:
 - Focus on discussing with developers
 - Build life cycle concepts in the applications
- Oracle layer
 - Leverage partitioning and compression
 - Movement of data to an external 'archival DB'

Active Dataset

- Many Physics applications are structured as write-once read-many
 - At a given time typically only a subset of data is actively used
 - Natural optimization: having large amounts of data that are set read only
 - Can be used to simplify administration
 - Replication and backup can profit too

Time Organized Data

- Several key database tables are naturally time organized
 - This leads to range-based partitioning
 - Other solution is 'manual split' i.e. multiple similar tables in different schemas
- Advantages
 - Partitions can be treated as separate tables for bulk operations
 - Full scan operation, if they happen, do not span all tables

Oracle partitioning

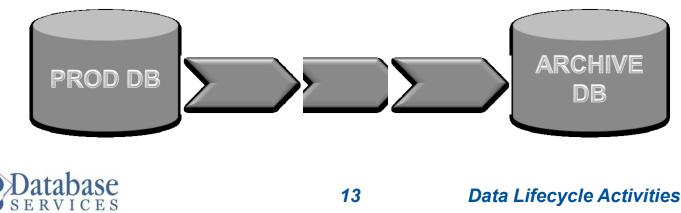
- Range partitioning on timestamp attributes
- unique indexes and local partitioning
 - Indexes need to be partitioned locally
 - Partitioning key must be part of index
- Partitions for 'future time ranges'
 - Currently pre-allocated
 - 11g new feature interval partitioning
- Performance benefits:
 - Partition prunning
 - Local indexes
 - table/index partition is separate segment

'Manual' Partitioning

- Range partitioning obtained by creating multiple schemas and sets of tables
 - Flexible, does not require partitioning option
 - And is not subject to partitioning limitations
 - More work goes into the application layer
 - Application needs to keep track of 'catalog' of partitions
- CERN Production examples
 - PVSS (commercial SCADA system)
 - COMPASS (custom development at CERN)

Compression

- Compressing segments in Oracle 10g
 - For non-active (read-mostly) data
 - Can Save disk space but
 - Compression factor depends on data
 - Compressed segments need less blocks so:
 - Less physical IO required for full scan
 - Less logical IO space occupied in buffer cache
 - Beware compressed segments consume more CPU
 - Additional cost associated with DML operations on compressed tables



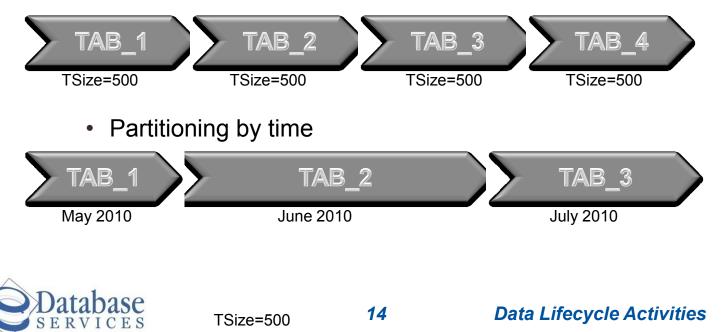
Archive DB

- In production since the end of 2009
 - It's an additional DB service to archive pieces of applications
 - Data in archive DB mainly for read-only workload (with a lower performance)
 - Archive DB is sized for capacity instead of IOPS
 - Reduces impact of production DB growth
 - Less critical for HA than production

CERN IT Department CH-1211 Geneva 23

www.cern.ch/it

Switzerland


Examples

PVSS for ATLAS

- Example of 'manual' partitioning
 - PVSS is consisted of set of schemas
 - Each schema has a set of 'event tables' created on regular basis defined by size of a table or time range

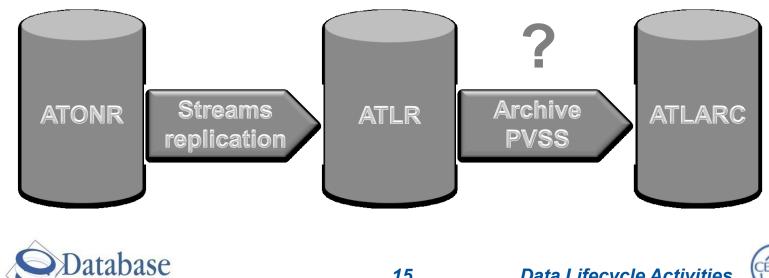
Partitioning by size

CERN IT Department CH-1211 Geneva 23

www.cern.ch/it

Switzerland

15



PVSS for ATLAS (2)

- Online needs: one year sliding window
 - Drop PVSS data older than 1 year from ONLINE
 - Do not replicate drop to OFFLINE
- Offline:

Examples

- One tablespace per each PVSS schema per year
- Current size (Atlas offline): 5.75 TB
- Possible move old data to ATLARC in the future.

PANDA Archive

- 'Jobsarchived' table consolidates many smaller tables previously in MySQL
 - Historical data coming from production
 - Oracle range partitioning by time
 - Since November 2010 one partition per 3 days of data (instead of monthly partitions)
 - One tablespace per year

CERN IT Department CH-1211 Geneva 23 Switzerland **www.cern.ch/it**

16

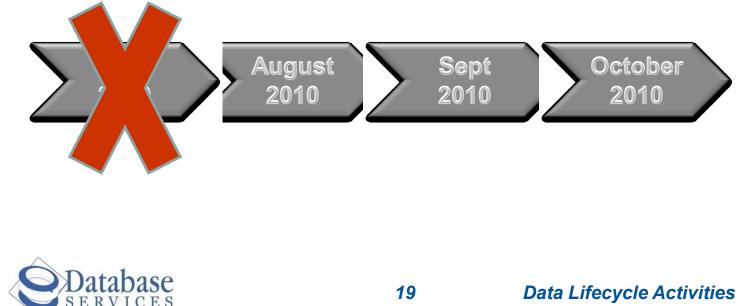
PANDA Archive (2)

- Lessons learned and techniques:
 - partition pruning vs. index access
 - smaller partitions (2-3 days) to profit from partition pruning
 - all indexes are local
 - application modifications to add time range in all queries

LCG SAME and GRIDVIEW

- Critical tables are partitioned
 - Range partitioned using timestamp
 - 1 partition per month
 - Contain live and historical data
 - All indexes are local
- Current size
 - 2.1 TB for LCG_SAME and 2.2 TB for GRIDVIEW

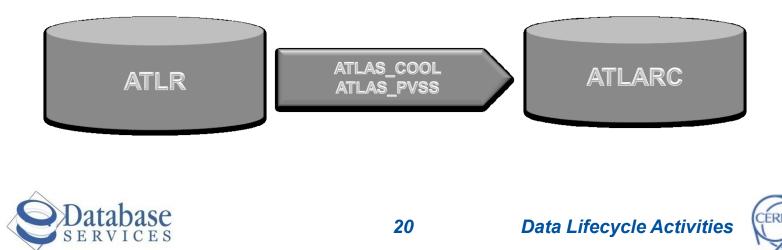
CERN IT Department CH-1211 Geneva 23


www.cern.ch/it

Switzerland

LCG SAME and GRIDVIEW (2)

- Delete old partitions:
 - Every month
 - Partitions older than 3 months


Archive DBs

- Archive DBs run on more powerful hardware since 2010
- High capacity disks (60-100TB of raw space)
- Quadcore servers with 24GB of memory
- Currently being used in ATLAS and CMS for:
 - Snapshots of CMS conditions data
 - ATLAS TAGs data
 - PVSS & COOL 'archived'
 - ... ?

CERN IT Department CH-1211 Geneva 23

www.cern.ch/it

Switzerland

- Data Life Cycle Management is worth the effort:
 - Proactively address issues of growing DBs
 - Manageability
 - Performance
 - Cost
- Understanding of data flow, requirements and hardware limitations is a key to success
- Involvement of application owners is fundamental
- Successfully implemented by several applications
- Techniques within Oracle that can help
 - Partitioning
 - Archival DB service
 - Compression

Acknowledgements

- Luca Canali
- Jacek Wojcieszuk
- Gancho Dimitrov
 - Dawid Wojcik
- Florbela Tique Aires Viegas

http://phydb.web.cern.ch/phydb/

Q&A

Thank You!

Questions? <u>phydb.support@cern.ch</u> <u>marcin.blaszczyk@cern.ch</u>

