New Ideas in Wavelike Dark Matter Detection

Wavelike Dark Matter

- Two classical limits of QFT: point particles and classical fields
- Wimps are an example of the first: heavy (~100 GeV) and low in number direct detection looks for scatterings
- What about light dark matter, say below eV?
- Much higher occupation numbers (can be more than 10²⁵): usually treated as a classical field
- Totally different phenomenology

Axions and ALPs

- Introduced to resolve the strong CP problem
- Introduce a new anomalous U(1) chiral symmetry
- New pseudoscalar degree of freedom

$$\mathcal{L}_{\text{stand mod + axion}} = \dots + \frac{1}{2} \partial_{\mu} a \partial^{\mu} a$$

$$+ \frac{g^2}{32\pi^2} \frac{a(x)}{f_a} G^a_{\mu\nu} \tilde{G}^{a\mu\nu}$$

Axions and Alps

- The axion is the angular degree of freedom which is unbroken at intermediate temperatures
- At the QCD scale the potential tilts as the axion acquires a mass – axion rolls down to a CP conserving minimum
- Can be produced by misalignment or topological defects

Axion Electrodynamics

- Axions and ALPs interact with photons through an anomaly term
- This coupling is tiny, but still important
- Mixes with the photon in an external magnetic field

$$\mathcal{L}=-rac{1}{4}F_{\mu
u}F^{\mu
u}-J^{\mu}A_{\mu}+rac{1}{2}\partial_{\mu}a\partial^{\mu}a-rac{1}{2}m_{a}^{2}a^{2}-rac{g_{a\gamma}}{4}F_{\mu
u}\widetilde{F}^{\mu
u}a,$$

$$g_{a\gamma}$$
 $m_a = 5.70(7) \, \mu \mathrm{eV} \, rac{10^{12} \mathrm{GeV}}{f_a} \, ,$ $g_{a\gamma} = rac{lpha}{2\pi f_a} \, C_{a\gamma} = 2.04(3) imes 10^{-16} \, \mathrm{GeV}^{-1} \, rac{m_a}{\mu \mathrm{eV}} \, C_{a\gamma} \, ,$ $C_{a\gamma} = rac{E}{N} - 1.92(4) \, ,$

Hidden/Dark photons

- New U(1) gauge boson with tiny kinetic mixing with the visible photon
- Can be non-thermally produced as a good dark matter candidate

$$\mathcal{L} \supset -\frac{1}{4} F_{\mu\nu} F^{\mu\nu} - \frac{1}{4} X_{\mu\nu} X^{\mu\nu} + e J_{\rm EM}^{\mu} A_{\mu} \ + \frac{m_X^2}{2} \left(X^{\mu} X_{\mu} + 2 \chi X_{\mu} A^{\mu} \right) \, ,$$

Hidden Photons vs ALPs

- Key difference: HP doesn't need B-field!
- Key difference: HP has a polarisation!
- May be randomised or fixed depending on the production mechanism (or somewhere in-between)
- Structure formation may change this, but no detailed studies

Parameter Space

How do you find a wave?

- Can't just look for scatterings
- Exploit the coherence of the field to increase the signal
- Analogue: finding the right radio station
- Currently in an experimental boom: lots of new ideas and experiments

Cavity Haloscopes

- Originally introduced to search for the axion
- Oldest and most established method (proposed by Sikivie)
- Build a cavity matching the Compton wavelength of DM to resonantly break translation invariance
- Requires large volume hard to do for large axions masses (small wavelengths)
- Examples include ADMX, HAYSTAC, CULTASK, RADES...

Cavity Extensions

- Multiple cavities (ADMX, CULTASK)
- Coupled cavities (RADES, CULTASK, ORGAN)
- Non-traditional cavities (ADMX, HAYSTAC, CULTASK)
- Bigger Magnets
- Better detectors (Beyond the SQL)

Cavity Extensions

- General theme: increase the volume using multiple cavities/cavity sections
- Not strictly new, but much revitalised

Beyond Cavities

- Dish Antennas (BREAD, BRASS)
- Dielectric haloscopes (MADMAX, MuDHI LAMPOST)
- Plasma haloscopes (ALPHA)
- Resonators with LC circuits (ABRACADABRA, DM Radio, SHAFT)
- NMR (CASPER)
- 5th force (ARIADNE, QUAX)
- Atomic transitions (AXIOMA)
- Topological insulators (TOORAD)
- Black hole super radiance
- Neutron star radio signals...

Plasma Haloscopes

- Why break translation invariance?
- Just match the photon and DM masses: plasma!
- Strong possibilities using wire metamaterials (arXiv:1904.11872, arXiv:2006.06836)
- Not limited by the Compton wavelength!
- Allows for higher masses to be searched
- Being pursued by ALPHA
- Similar idea with dielectric rods instead of metal wires being pursued at CAPP (arXiv:2205.08885)

Jón Gudmundsson

ALPHA

• Budding consortium with collaborators in SU, MIT, Berkeley, ITMO...

- Building better analytical and numerical tools (understanding of quality factors, mode structure)
- Early prototypes built, moving towards tuneable and larger prototypes (arXiv:2203.10083, arXiv:2203.13945)
- Likely to use a 13 T magnet at Oakridge

Dish Antenna

- Breaks translation invariance with a mirror (arXiv:1212.2970)
- No resonance!
- Completely broadband response
- Focus a large area onto a detector to increase S/N
- Experiments like FUNK, Tokyo, SHUKET, BREAD, BRASS...

Dielectric Haloscopes

- Dish antenna on steroids (arXiv:1611.05865)
- Use many dielectric layers, each creating waves which constructively interfere
- Tune frequencies by controlling disk spacings
- Lots of freedom over frequency response!
- Very large volumes
- Being pursued by MADMAX, MuDHI and LAMPOST

Dielectric Haloscopes

- Two versions being pursued: movable disks, GHz version (MADMAX, DALI)
- Thin film optical version (MuDHI, LAMPOST)

LC Circuits

- Rather than measure E, create a circuit that measures B (1310.8545, 1602.01086)
- Can create geometries that generate B (but not E) in the presence of DM
- Can be made broadband or resonant
- Works sub-wavelength: good for low frequencies!
- ABRACADABRA and DM Radio are typical examples (recently they have combined forces)

Superconducting Cavities For Low Mass Axions

- Superconductive cavities have very high Q
- Tend to break in strong B-fields
- Pump in one cavity mode, read out an overlapping mode
- If the two modes are close, works for low axion masses
- Old idea recently revitalised: arXiv:1009.0762,1806.07141, 1902.01418, 1912.11056, 1912.11048, 2007.15656

Haloscopes for HPDM

- In principle, most axion haloscopes using axion-photon mixing are sensitive to HPs
- For an example, take a cavity haloscope

$$P_{\rm cav}^{\rm DP} = \kappa \mathcal{G}^{\rm DP} V Q \rho_{\rm DM} \chi^2 m_X$$
, dark photon $P_{\rm cav}^{\rm axion} = \kappa \mathcal{G}^{\rm axion} V \frac{Q}{m_a} \rho_{\rm DM} g_{a\gamma}^2 B^2$, axion

$$\mathcal{G}^{\mathrm{DP}} = \frac{\left(\int dV \, \mathbf{E}_{\alpha} \cdot \hat{\mathbf{X}}\right)^{2}}{V_{\frac{1}{2}}^{1} \int dV \, \epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}},$$

$$\mathcal{G}^{\mathrm{axion}} = \frac{\left(\int dV \, \mathbf{E}_{\alpha} \cdot \mathbf{B}\right)^{2}}{VB^{2} \frac{1}{2} \int dV \, \epsilon(\mathbf{x}) \mathbf{E}_{\alpha}^{2} + \mathbf{B}_{\alpha}^{2}}.$$

Haloscopes for HP DM

- Two key differences
- HP does not need a B-field
- The polarisation direction of the HP matters
- (Usually) easy to convert between the two sensitivities

$$\chi = g_{a\gamma} \frac{B}{m_X |\cos \theta|}, \quad \cos \theta = \hat{\mathbf{X}} \cdot \hat{\mathbf{B}}.$$

Reinterpreting axion experiments

- Actually need to be very careful: many experiments use B-field vetos (arXiv:2006.06836)
- Polarisations can give a highly non-trivial time varying signal
- Timing and directional data rarely given
- Discovery potential can be improved by up to an order of magnitude with better search strategies (arXiv:2105.04565)

	Experiment		Magnetic field [T]	Latitude [°]	Measurement time, T	Directionality	$\langle \cos^2 \theta \rangle_T^{\text{excl.}}$
	ADMX-1	[107]	7.6	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	ADMX-2	[108]	6.8	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	ADMX-3	[110]	7.6	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	ADMX Sidecar	[109]	3.11 ^a	47.66	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	HAYSTAC-1	[111]	9	41.32	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	HAYSTAC-2	[112]	9	41.32	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	CAPP-1	[113]	7.3	36.35	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
Cavities	CAPP-2	[154]	7.8	36.35	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	CAPP-3	[155]	7.2 and 7.9	36.35	90 s	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	CAPP-3 [KSVZ]	[155]	7.2	36.35	15 hr	$\hat{\mathcal{Z}}$ -pointing	0.26
	QUAX- $\alpha\gamma$	[114]	8.1	45.35	4203 s	$\hat{\mathcal{Z}}$ -pointing	0.03
	†KLASH	[156]	0.6	41.80	$\mathcal{O}(min)$	$\hat{\mathcal{Z}}$ -pointing	$\sim \! 0.025$
	RBF	[115]		N	Magnetic field vet	o	
	UF	[116]	Magnetic field veto				
	ORGAN	[117]	Magnetic field veto				
	RADES	[157]	Magnetic field veto				
	ADMX SLIC-1	[158]	4.5	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	\sim 0.37
	ADMX SLIC-2	[158]	5	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	\sim 0.37
LC-circuits	ADMX SLIC-3	[158]	7	29.64	$\mathcal{O}(min)$	$\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	\sim 0.37
	ABRACADABRA	[118]	Magnetic field veto				
	SHAFT	[119]	Magnetic field veto				
Plasmas	[†] ALPHA	[159]	10	Unknown	$\mathcal{O}(ext{week})$	$\hat{\mathcal{Z}}$ -pointing	0.28-0.33
Dielectrics	†MADMAX	[160]	10	53.57	$\mathcal{O}(ext{week})$	$\hat{\mathcal{Z}}$ -pointing or $\hat{\mathcal{N}}/\hat{\mathcal{W}}$ -facing	0.26 or 0.62–0.66 ^b
	†LAMPOST	[36]	10	Unknown	$\mathcal{O}(ext{week})$	Any-facing	0.61-0.66
	†DALI	[161]	9	28.49	O(month)	Any-facing ^c	0.61-0.66
Dish antenna	†BRASS	[110]	1	53.57	O(100 days)	Any-facing	0.61-0.66
Topological insulators	†TOORAD	[162]	10 ^d	Unknown	O(day)	Any-pointing	0.18-0.33

Conclusions

- Many new ideas that will be capable of searching a large fraction of the well motivated parameter space
- Still early days! Need to be shown practical
- Needs some standardisation about assumptions
- Axion experiments should do dedicated DP analysis, not just leave them for people to try to reinterpret them

Current HP Limits

• Rescaled for fixed polarisation (conservative case)

Alex Millar