A Step in Understanding the Hubble Tension

Melissa Joseph

Daniel Aloni, Asher Berlin, Martin Schmaltz, Neal Weiner arXiv: 2111.00014

H₀ Tension

- Local measurement: 73.2 ± 1.3 km/s/Mpc (Riess et al 2021)
 - Distance ladder w/ Type 1a SN & Cepheids
- Value from Λ CDM (fit to CMB): 67.4 ± 0.5 km/s/Mpc (Planck 2018)

~ 4σ tension

ΛCDM

Simplest extension of ΛCDM - add extra radiation

eff =
$$\frac{\rho_{DR}}{\rho_{1\nu}}$$

I: $N_{eff} = 3.044$

Radiation is dark

Free-streaming (no interactions) radiation

S

Strongly interacting radiation

S

Free-streaming radiation model is too constrained

Free Streaming Strongly Interacting

Interacting radiation (SIDR) is better but still > 3σ

Consider a simple model with two particle species Wess-Zumino Dark Radiation (WZDR)

Massive scalar - ϕ (~eV) Massless fermion - ψ

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Melissa Joseph, Boston University

 $a^{3}\rho$

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

Massive particles become non-relativistic and decay

A mix of relativistic ~ a^{-4} and non-relativistic ~ a^{-3} particles

What happens at the mass threshold?

Entropy Conservation:

$$S = a^3 \frac{\rho(T) + P(T)}{T} = \text{constant}$$

Melissa Joseph, Boston University

12

In Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon

BOSS DR12), Pantheon, SHOES

Data

Results

Model	Tension	$\Delta \chi^2$
$\Lambda \text{CDM} + N_{\text{eff}}$	3.7σ	-5.7
SIDR	3.1 σ	-10.6
WZDR	2.7σ	-15.1

The H_o Olympics: A fair ranking of proposed models [Schöneberg *et.al.* 2107.10291]

Summary

- Simplest extensions of ΛCDM include adding extra radiation

• If the radiation is interacting: a simple model includes a massive particle (WZDR)

- WZDR does well in external metrics comparing solutions to the Hubble tension
- Next: Natural extensions include interactions with the dark matter