A Step in Understanding the Hubble Tension

Daniel Aloni, Asher Berlin, Martin Schmaltz, Neal Weiner arXiv: 2111.00014

Melissa Joseph

*H*0 **Tension**

- Local measurement: 75.2 ± 1.5 km/s/Mpc (Riess et al 2021)
	- Distance ladder w/ Type 1a SN & Cepheids
- Value from Λ CDM (fit to CMB): 67.4 ± 0.5 km/s/Mpc (Planck 2018)

 $-4σ$ tension

$$
\Delta N_{\text{eff}} = \frac{\rho_{DR}}{\rho_{1\nu}}
$$

ACDM: $N_{\text{eff}} = 5.044$

Simplest extension of ΛCDM - add extra radiation

Radiation is dark

Free-streaming (no interactions) radiation

 $\frac{1}{c_s^2}$ *s* $= 1'$ c_s^2

s $= 1/3$

Strongly interacting radiation

Free-streaming radiation model is too constrained

Interacting radiation (SIDR) is better but still $> 3\sigma$

Free Streaming Strongly Interacting

Massive scalar - ϕ (~eV) Massless fermion - *ψ*

Consider a simple model with two particle species Wess-Zumino Dark Radiation (WZDR)

What happens at the mass threshold?

A mix of relativistic ~ *a*−⁴ and non-relativistic ~ *a*−³ particles

Massive particles become non-relativistic and decay

a

A mix of relativistic ~ *a*−⁴ and non-relativistic ~ *a*−³ particles

Massive particles become non-relativistic and decay

What happens at the mass threshold?

A mix of relativistic ~ *a*−⁴ and non-relativistic ~ *a*−³ particles

Massive particles become non-relativistic and decay

What happens at the mass threshold?

A mix of relativistic ~ *a*−⁴ and non-relativistic ~ *a*−³ particles

Massive particles become non-relativistic and decay

What happens at the mass threshold?

Melissa Joseph, Boston University

 c_s^2

12

² Entropy Conservation:

$$
S = a^3 \frac{\rho(T) + P(T)}{T} = constant
$$

Melissa Joseph, Boston University

¹³ Melissa Joseph, Boston University

Data

- Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon

+ - Planck 2018 TT, EE, TE and Lensing, BAO(6dF, MGS, BOSS DR12), Pantheon, SH0ES

Results

The H_o Olympics: A fair ranking of proposed models [Schöneberg] *et.al.* 2107.10291]

Summary

• Simplest extensions of ACDM include adding extra radiation

• If the radiation is interacting: a simple model includes a massive particle (WZDR)

- WZDR does well in external metrics comparing solutions to the Hubble tension
- Next: Natural extensions include interactions with the dark matter