

Wenzer Qin

with Katelin Schutz, Aaron Smith, Enrico Garaldi, Rahul Kannan Tracy Slatyer, Mark Vogelsberger

EXTENDING the EFFECTIVE FIELD THEORY of 21CM RADIATION

2205.06270

EUCAPT SYMPOSIUM MAY 23RD, 2022

WHAT IS 21CM COSMOLOGY?

- What redshifts have we directly measured?
 - z~few: e.g. galaxy surveys
 - z=1100: cosmic microwave background

WHAT IS 21CM COSMOLOGY?

- In between, there are few stars/galaxies, only diffuse hydrogen
 - Search for the hyperfine transition of neutral hydrogen \rightarrow 21cm

WHAT IS 21CM COSMOLOGY?

- In between, there are few stars/galaxies, only diffuse hydrogen
 - Search for the hyperfine transition of neutral hydrogen \rightarrow 21cm

WHAT'S THE CATCH?

• Experimentally: huge foregrounds, e.g. synchrotron radiation

WHAT'S THE CATCH?

- Experimentally: huge foregrounds, e.g. synchrotron radiation
- Theoretically: Prevailing view has been that analytic/perturbative methods are too difficult
 - Reionization is very patchy/nonlinear
 - Instead rely on computationally expensive simulations/seminumerics

21CM SIGNAL IS PERTURBATIVE

- Effective field theory can describe the signal on observable scales
- What does our effective field theory for 21cm radiation include?
 - Bias expansion, since 21cm signal traces matter density
 - Redshift space distortions, since sources have peculiar velocities
 - Renormalized bias, to deal with small scale nonlinearities

COMPARISON TO SIMULATION

2205.06270

COMPARISON TO SIMULATION

2205.06270

COMPARISON TO SIMULATION

EFT still has predictive power past the wavenumbers that we fit

2205.06270

SUMMARY

- On observable scales, can use perturbative methods for 21cm brightness temperature
- We've extended these EFT methods, e.g. including RSDs
- Theory expansion is a good fit to simulations, at early enough redshifts and large length scales
- Evolution of coefficients reflects different physics between simulations
- Future steps:
 - Spin temperature fluctuations?
 - Orthogonalize terms in the expansion