

New directions in dark matter direct detection

CARLOS BLANCO

Light DM-electron scattering

Kinematic Requirement $\Delta E = \vec{v}_{\chi} \cdot \vec{q} - \frac{q^2}{2\mu_{\chi m}}$

 $\Delta E \sim \mathcal{O}(\text{few eV})$

What has such transition energies?

- Molecules, Semiconductors

Fluorescence: scintillation

- Non-Radiative Transitions Absorbtion: Blue photon (E^A) promotes electronic transition: $S_0 \rightarrow$ S_1 ∆J ≠0
	- Non-Radiative Transition: Internal conversion or vibrational deexcitation
	- Emission: Red Photon (E_{E}) emitted as electronic state relaxes back to S_0

p-xylene (EJ-301)

EJ-301 Solvent: para-xylene Fluor: 5% by mass

- Absorption spectra of p-xylene is well described by slightly perturbed aromatic peaks
- Expected since methyl groups don't affect LCAO at leading order
- Produce perturbation at ~5% level in energy,
	- Benzene HOMO/LUMO gap = 4.9 eV
	- p-xylene HOMO/LUMO gap = 4.7 eV

Results : Liquid EJ-301

ArXiv:1912.02822 & 2103.08601 Carlos Blanco @ EuCAPT 2022 5

Trans-Stilbene

Daily Modulation

Normalized modulation signals for a variety of DM masses, m_{γ} = 2-1000 MeV, for a crystal in $\beta = 0^{\circ}$ and $\beta = 90^{\circ}$ orientations. Above 10 MeV, the rate relaxes into a function of time that is nearly independent of the DM mass and with modulation amplitude only mildly dependent on the crystal orientation. The peak-totrough modulation amplitudes are as large as 60% at low masses and 10% at high masses for $F_{DM} = 1$, increasing to 70% at low masses and 25% at high masses for $F_{\rm DM} = (\alpha m_e/q)^2$.

ArXiv:1912.02822 & 2103.08601 Carlos Blanco @ EuCAPT 2022 7

Sensitivity & Reach: Solid

The capability of a $1 \text{ kg} \cdot \text{year}$ tstilbene experiment to detect or exclude DM models with $F_{DM} = 1$ or $F_{\rm DM} = (\alpha m_e/q)^2$ couplings to electrons, shown with existing limits from SENSEI, XENON 10, and XENON 1T. The dotted and dashed lines show the 90% CL exclusions that can be set from the total number of events, without considering modulation effects, for $R = 1/60 \text{ Hz kg}^{-1}$ $(N_{\text{events}} \approx 5.26 \times 10^5)$ and for $N_{\text{events}} =$ 0, respectively. The orange shaded regions indicate parameter space that leads to a sufficiently large modulation signal that a 1 kg \cdot year experiment could observe a 3σ detection, given a total observed rate of $R =$ $1/60$ Hz kg⁻¹. The solid black " $\Delta N =$ 0" lines show the improved limit that can be set from a null result exhibiting no daily modulation but the same

ArXiv:1912.02822 & 2103.08601 Carlos Blanco @ EuCAPT 2022 total observed rate.

Anatomy of QDs

Zherebetskyy et al., Science 344, 1380 (2014)

$$
E_{\text{confinement}} = \frac{\hbar^2 \pi^2}{2R^2} \left(\frac{1}{m_e} + \frac{1}{m_h} \right) = \frac{\hbar^2 \pi^2}{2m^* R^2}
$$

$$
E = E_{\text{bandgap}} + E_{\text{confinement}}
$$

$$
= E_{\text{bandgap}} + \frac{\hbar^2 \pi^2}{2m^* R^2}
$$

Stabilizing ligands

Small semiconductor crystal (e.g. PbS, a = 0.5nm)

 $R \sim 10$ nm $R << a_0 \sim 20$ nm

Excitations in QD: Quick review

- Absorbtion: (b) Creation of a "hot" exciton – an electron/hole pair with energy significantly larger than the bandgap
- Non-Radiative Transition: (b) MEG multi-exciton generation when energy is greater than twice the bandgap. Creates several band-edge excitons.
- Emission: (b) Radiative recombination of severalband-edge excitons producing several coincident photons

QDs sensitivity

