Addendum: Liquid β-NMR studies of the interaction of Na and K cations with DNA G-quadruplex structures

Spokesperson: Beatrice Karg, Magdalena Kowalska

February 9, 2022

Quadruplex-DNA

Thrombin Binding Aptamer (tba)

c-myc

Human Telomeric (ht)

therapeutic DNA from clinical trials 2 tetrads -> single ion binding site

oncogene promoter sequencemost stable, fast kinetics

native telomeric repeat
structure cation-dependent

The Problems and the Unknowns

Left: Salgado et al., G-quadruplex DNA and ligand interaction in living cells using NMR spectroscopy, Chemical Science, 2015 Middle: Wong et al., Direct NMR detection of the "invisible" alkali metal cations tightly bound to G-quadruplex structures, Biochemical and Biophysical Research Communications, 2005

Harding et al., Magnetic moments of short-lived nuclei with part-per-million accuracy: Paving the way for applications of β -detected NMR in chemistry and biology,

The New Beamline

CAD-Design: N. Azaryan, Render: M. Jankowski

• 4.7T with sub-ppm homogeneity

New Magnet

$\beta\text{-NMR}$ of alkali metals in Oligonucleotides

Progress in β-NMR

New Detectors

Developed and built by: M. Madurga-Flores, M. Myllymäki, S. Warren

Progress in β -NMR

β -NMR of alkali metals in Oligonucleotides

New Detectors

Developed and built by: M. Madurga-Flores, M. Myllymäki, S. Warren

New Data Acquisition System

Time-resolved β -asymmetry and number of β events for a hyperfine structure scan for data points in resonance with optical pumping laser

- combined data acquisition and control system
- FPGA-based 250 MHz 14-bit oscilloscope
- calculation of time-resolved properties for each beta-particle in real time (timestamp, amplitude, integral etc.)
- in-depth data analysis

Written by: M. Jankowski, J. Croese, H. Brand

Improvements

۲

۲

A look at Deep Eutectic Solvents

Data-preparation: K. Dziubinska-Kühn

- (²³Na frequency: 34.045680 MHz)
- $\Delta \nu$ between solvents: 110 ± 0.5 Hz (chemical shift difference between solvents preserved)
- FWHM: 60 120 Hz \pm 10 Hz

A new nucleus - Moving to 37 K

Data-preparation: M. Jankowski

14 shifts for 1 run + remaining 14 shifts:

- 4 shifts: final testing/optimisation: detectors, sample holder, RF coil
- \bullet 10 shifts: polarisation and $\beta\text{-NMR}$ on ^{49}K
- \bullet 14 shifts: final experiment ($^{26}\mathrm{Na}$ and/or $^{49}\mathrm{K}$ with Quadruplex-forming oligonucleotides)

Technical:

- 26 Na: Ta, Ti, or UC_x target; 49 K: UC_x target
- \bullet yield: $^{26}\text{Na:}$ yield: 10^7 ions/s, $^{49}\text{K:}$ 2×10^4 ions/s

- successful ²⁶Na commissioning
- significantly reduced linewidth/uncertainty
- ³⁷K measured in crystal

 polarize and measure ⁴⁹K
Oligonucleotide measurements with either Na/K

Properties of stable and radioactive isotopes relevant for this proposal

Nucleus	Radioactive half-life	Nuclear spin <i>I</i>	Magnetic moment (μ_N)	Quadrupole moment (mb)	Observed β -asymmetry
²³ Na	-	3/2	2.217499(7)	104	-
²⁶ Na	1.077 s	3	2.849378(20)	-5	25%
³⁷ K	1.237 s	3/2	0.20320(6)	100	8-11%
³⁹ K	-	3/2	0.39147(3)	60	-
⁴⁹ K	1.260 s	1/2	1.33868(8)	-	-

Harding et al., Magnetic moments of short-lived nuclei with part-per-million accuracy: Paving the way for applications of β -detected NMR in chemistry and biology, http://arxiv.org/abs/2004.02820, 2020

Shidling et al., Precision half-life measurement of the β^+ decay of ${}^{37}\mathrm{K}$, Phys. Rev. C, 2014

Kopf et al., Optical pumping of short lived β -radioactive isotopes and the magnetic moment of 37K, Zeitschrift für Physik, 1969

Von Platen et al., Spin exchange polarization and hfs anomaly measurement of β -active 37K, Zeitschrift für Physik, 1971

Minamisono et al., Quadrupole moment of 37K, Physics Letters B, 2008

Carraz et al., The 49K beta decay, Physics Letters B, 1982

- for ⁴⁹K: UC_x (2 × 10⁴ ions/s), record ⁴⁹K β -NMR resonances in crystal (establish polarization, then determine resonance frequency), ionic liquids/DES
- 1 shift at the start of every beamtime: establishing laser polarisation by HFS scans, optimising laser-atom overlap
- 0.3-0.5 shift (for each solvent and G4 configuration): measuring T₁ in one liquid sample, with different parameters optimised
- 0.5-1 shift for each solvent and G4 configuration: performing several NMR scans in one liquid sample (depending on the number of peaks and observed β-asymmetry)