

 Location of the neutron single particle orbitals • Size of the N=50 gap at Z=30 near ^{78}Ni (Z=28)

Evolution of N = 50 shell and neutron single-particle states towards ⁷⁸Ni: ⁷⁹Zn(d,py)⁸⁰Zn

⁷⁹Zn(n,γ) cross section and r-process around A = 80 mass region

> Spokesperson: E. Sahin, University of Oslo, Oslo, Norway

- ▶ I=2 transfer (2+,3+,...,7+) from the g.s. ⁷⁹Zn, 9/2+
- Sensitive to changes in the N=50 shell gap due to monopole interaction
- SM calculations exist only for 5⁺ and 6⁺ from Z=28 to Z=36

1p-1h excitations

- ▶ I=2 transfer (2+,3+,...,7+) from the g.s. ⁷⁹Zn, 9/2+
- Sensitive to the N=50 shell gap due to monopole interaction
- ▶ SM calculations exist only for 5⁺ and 6⁺

$\nu 1g_{9/2}^{-1} \otimes \nu 3s_{1/2}^{1}$ States

- ▶ I=0 transfer (4+,5+) from the g.s.
- Location information, 3s_{1/2}
- No SM calculations
- Estimated to be few hundreds keV higher than the I=2 states

J.S. Thomas et al., Phys. Rev. C 71, 021302R (2005)

Excitation Energy (MeV)

Location of the $s_{1/2}$ and $d_{5/2}$ states in the N=51 isotones

- ▶ I=2 transfer (2+,3+,...,7+) from the g.s. ⁷⁹Zn, 9/2+
- Sensitive to the N=50 shell gap due to monopole interaction
- ▶ SM calculations exist only for 5⁺ and 6⁺

$\nu 1g_{9/2}^{-1} \otimes \nu 3s_{1/2}^1$ States

- ▶ I=0 transfer (4+,5+) from the g.s.
- Location i calculations nformation, 3s_{1/2}
- No SM
- Estimated to be few hundreds keV higher than the I=2 states

$$\nu 1 g_{9/2}^{-2} \otimes \nu 3 s_{1/2}^2$$
 States

- I=0 transfer from the isomeric state in ⁷⁹Zn
- ▶ $E_{1/2+}$ = 1.05 MeV & $t_{1/2} \ge 200 \text{ ms}$
- Possible assignment as (1p-2h) excitations across N=50 (PFSDG-U int.)
- Evidence for a 0+ intruder state

ISOLDE: X. F. Yang et al., PRL 116, 182502 (2016).

ISOLDE: R.Orlandi et al., Phys. Letts. B 740, 298 (2015).

- ▶ I=2 transfer (2+,3+,...,7+) from the g.s., 9/2+
- Sensitive to the N=50 shell gap due to monopole interaction
- ▶ SM calculations exist only for 5⁺ and 6⁺

$\nu 1g_{9/2}^{-1} \otimes \nu 3s_{1/2}^1$ States

- ▶ I=0 transfer (4+,5+) from the g.s.
- Location i calculations nformation, 3s_{1/2}
- No SM
- Estimated to be few hundreds keV higher than the I=2 states

$$\nu 1 g_{9/2}^{-2} \otimes \nu 3 s_{1/2}^2$$
 States

- I=0 transfer from the isomeric state in ⁷⁹Zn
- ▶ $E_{1/2+}$ = 1.05 MeV & $t_{1/2} \ge 200 \text{ ms}$
- Possible assignment as (1p-2h) excitations across N=50 (PFSDG-U int.)
- Evidence for a O⁺ intruder state

ISOLDE: X. F. Yang et al., PRL 116, 182502 (2016).

ISOLDE: R.Orlandi et al., Phys. Letts. B 740, 298 (2015).

E(0⁺) ≈ 2 MeV **v**(2p-2h)

- ▶ I=2 transfer (2+,3+,...,7+) from the g.s., 9/2+
- Sensitive to the N=50 shell gap due to monopole interaction
- ▶ SM calculations exist only for 5⁺ and 6⁺

$\nu 1g_{9/2}^{-1} \otimes \nu 3s_{1/2}^1$ States

- ▶ I=0 transfer (4+,5+) from the g.s.
- Location i calculations nformation, 3s_{1/2}
- No SM
- Estimated to be few hundreds keV higher than the I=2 states

$\nu 1g_{9/2}^{-2} \otimes \nu 3s_{1/2}^2$ States

- ▶ I=0 transfer from the isomeric state in ⁷⁹Zn
- ▶ $E_{1/2+}$ = 1.05 MeV & $t_{1/2} \ge 200$ ms
- Possible assignment as (1p-2h) excitations across N=50 (PFSDG-U int.)
- Evidence for a 0+ intruder state

2⁺ state at ISOLDE Coulomb excitation : J. Van de Walle et al., PRL 99, 142501 (2007).

RIKEN inelastic scattering and proton removal: ⁹Be(⁸⁰Zn,⁸⁰Zn) and ⁹Be(⁸¹Ga,⁸⁰Zn) :

Y. Shiga et al., PRC 93 024320 (2016).

5+,6+ : K. Sieja and F. Nowacki, PRC85 051301(R) (2012)

DWBA Calculations via FRESCO

s.p. cross sections

Parabola similar to ⁹⁰Zr & ⁸⁸Sr

Setup and Experiment

Beam energy (⁷⁹Zn) Beam intensity on MINIBALL Target thickness (CD₂) **Cross sections**

Isolde Database: $10^6 \text{ pps/}\mu\text{C UCx}$ Suggested value from the earlier records: ~5.10⁵ pps/ μ C UCx 1.6 μ C total proton intensity + 5% transmission eff. ==> 4x10⁴ pps at MINIBALL

Rb/Ga contamination: 4x10³ pps recommended by TAC.

⁷⁹Zn(*d*,*p*γ)⁸⁰Zn inverse kinematics

395 MeV (5 MeV/nuc) 4x10⁴ pps -> 4x10³ pps $mg/cm^2 \rightarrow 2 mg/cm^2$ **DWBA via FRESCO**

- TREX angular coverage: 60%
- MINIBALL efficiency on average 6% at 1MeV
- Average cross section for $\nu 1g_{9/2}^{-1} \otimes \nu 2d_{5/2}^1$ states : 20 mb
- Average cross section for $\nu 1g_{9/2}^{-1} \otimes \nu 3s_{1/2}^1$ states : 28 mb

Beam time request TOTAL: 21 shifts for physical runs + 3 shifts for beam preparation

 $\begin{array}{ll} (particle-\gamma) & (particle-\gamma\gamma) \\ \hline 300 & 30 \\ \hline 30 & 400 \end{array}$

Identification of states in the worst scenario:

Low-spin states have lower cross section and energy behaviour also follows a certain trend (parabola).

One can use gamma-tagged proton angular distributions and see how this compares with the expected trends of the excitation energy and the s.p. cross sections.

Plus shell model calculations might be helpful.

	This proposal
	⁷⁹ Zn(d,pγ) ⁸⁰
Beam intensity	5x10 ⁴ pps/μC 4x10 ³ pps at N
Target thickness	2 mg/cm ²
Required beam time	7 days
Expected yield	300 p γ / 30 p $\gamma\gamma$ events fo 400 p γ /40 p $\gamma\gamma$ events for

Future perspective: New neutron converter will increase expected yield as indicated in IS556. Test has been done Ref: J.P. Ramos et al., NIMB 463, 357 (2020).

Alternative solution could be dropping the neutron converter (UCx + neutron converter + quartz line + RILIS)

	Accepted proposal Spokesperson: R. Orlandi					
P Zn	IS556 ⁸⁰ Zn(d,pγ) ⁸¹ Zn					
C at UCx	3x10 ⁴ pps/μC at UCx					
MINIBALL	2.3x10 ³ pps at MINIBALL					
	2 mg/cm ²					
	7 days					
or one l=2 state	350 p γ events for the I=0 state, 1/2 ⁺					
or one l=0 state						

Special thanks to Sebastian Rothe

Additional slides

Shell gap from mass is correlated.

SM approach:

- K. Sieja and F. Nowacki, PRC85 051301(R) (2012)
- F. Nowacki et al., PRL 117, 272501 (2016)
- A. Welker et al., PRL 119, 192502 (2017).

Mean-field approach: M. Bender et al. PRC78, 054312 (2008)

Correlation effects can be explored and help theory

Momentum matching in transfer reactions

⁶⁰Ni(α ,³He): Q_{g.s.} = -12.8 MeV -> high momentum transfers ⁶⁰Ni(d,p): Q_{g.s.} = 5.6 MeV -> low momentum transfers

FIG. 8. Measured differential cross sections and DWBA fits for l = 2 transitions. All fits are based on NLFR calculations using L/B parameters.

den haar vaa heef (n 1994 - Heef Heef Heef Heef Heef Heef Heef He			This experiment ^b					
	Cosman and	d Slater ^a						
keV)	$l G_{1}$	ı J ^C l	G_{lj}^{88}	G_{lj}^{89}	(assumed) ^d	S ⁸⁸ _{1j}		
36)	2 0.	126 2	(0.13)		2^+	0.25		
32	2 0.1	279 2	0.35		2+	0.71		
94	2 0.	376 2	0.53		4+	0.59		
13	2 0.	875 2	1.18		[5]+	1.07		
50)	2 0.	083 (2)	(~0.10)		[4]+	(0.11)		
14	2 1.	080 2	1.31		[6]+	1.00		
33	2 0.	564 2	0.68		[3]+	0.97		
'44	2 0.	805 2	0.14	5.86	[4] ⁺	0.28(0.	16)	
94	2 1.	040 2	1.33		[7]+	0,89		
	5.	228	5.75	5.86				
73 ^e	0 0.	230 0	0.24 e	2	[4]+	0.26 ^e		
16	0 0.	105 0	0.13		[5]+	0.12		
66	0 0.	563 0	0,61		4+	0.67		
06)	0 0.	027 (0)	<0.01					
29	0 0.	789 0	0.94		[5] ⁺	0.85		
(80)	0 0.	405 0	$0(\pm 0.03)$	1.92				
214)	0 0.	031 (0)						
·	$\overline{2}$.	150	1.95	1.92				

TABLE V. Summary of (d, p) results for levels in ⁸⁸Sr.

ES et al., Nucl. Phys. A 893, 1-12 (2012)

Weak r-process

Sensitivity study to the n-capture process in the context of neutron-rich supernova and collapsar accretion disk winds.

R. Surman et al., AIP Advances 4, 041008 (2014)

weak r process—a rapid neutron capture process that forms a solar-type A ~ 80 r-process peak and potentially nuclei up to the A ~ 130 peak.

Nuclear data relevant to r-process calculations are (pinparity assignments, excitation energies, spectroscopic factors and can be extracted from transfer reactions, such as (d, p).

gSF

+6 LaBr₃

 $P(E_{\gamma}, E_x) \propto \rho(E_f) \mathscr{T}(E_{\gamma})$

Oslo method in inverse kinematics

⁸⁶Kr(d,p)⁸⁷Kr iThemba V. W. Ingeberg, Master thesis 2016 V.W.Ingeberg et al. Eur. Phys. J. A (2020) 56:68.

Experiment at ISOLDE (IS559): ⁶⁶Ni(d,p)⁶⁷Ni

V. Ingeberg, to be submitted to PRC, Feb 2022. V. Ingeberg, PhD thesis to be submitted, Feb 2022

A.C. Larsen et al., PRC **97**, 054329 (2018)

