Evolution of $\mathbf{N}=50$ shell and neutron single-particle states towards ${ }^{78} \mathrm{Ni}$: ${ }^{79 \mathrm{Zn}(\mathrm{d}, \mathrm{py})}{ }^{80 \mathrm{Zn}}$

$79 \mathrm{Zn}(\mathrm{n}, \gamma)$ cross section and r-process
around $A=80$ mass region

Spokesperson: E. Sahin, University of Oslo, Oslo, Norway

- Location of the neutron single particle orbitals
- Size of the $\mathrm{N}=50$ gap at $\mathrm{Z}=30$ near ${ }^{78} \mathrm{Ni}(Z=28)$

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1} \quad \text { States }
$$

I=2 transfer $\left(2^{+}, 3^{+}, \ldots, 7^{+}\right)$from the g.s. ${ }^{79} \mathrm{Zn}, 9 / 2^{+}$
Sensitive to changes in the $\mathrm{N}=50$ shell gap due to monopole interaction
SM calculations exist only for 5^{+}and 6+ from $\mathrm{Z}=28$ to $\mathrm{Z}=36$

1p-1h excitations

States from 1p-1h excitations

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1} \quad \text { States }
$$

B $\mathrm{I}=2$ transfer $\left(2^{+}, 3^{+}, \ldots, 7^{+}\right)$from the g.s. $79 \mathrm{Zn}, 9 / 2^{+}$

- Sensitive to the $\mathrm{N}=50$ shell gap due to monopole interaction
SM calculations exist only for 5^{+}and 6^{+}

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 3 s_{1 / 2}^{1} \quad \text { States }
$$

- $1=0$ transfer $\left(4^{+}, 5^{+}\right)$from the g.s.
- Location information, $3 s_{1 / 2}$
* No SM calculations
* Estimated to be few hundreds keV higher than the I=2 states
J.S. Thomas et al., Phys. Rev. C 71, 021302R (2005)
${ }^{80} \mathrm{Zn} \nu(1 p-1 h)$

Location of the $\mathrm{s}_{1 / 2}$ and $\mathrm{d}_{5 / 2}$ states in the $\mathrm{N}=51$ isotones

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1} \quad \text { States }
$$

- $\mathrm{I}=2$ transfer $\left(2^{+}, 3^{+}, \ldots, 7^{+}\right)$from the g.s. $79 \mathrm{Zn}, 9 / 2^{+}$
- Sensitive to the $\mathrm{N}=50$ shell gap due to monopole interaction
SM calculations exist only for 5^{+}and 6^{+}

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 3 s_{1 / 2}^{1} \quad \text { States }
$$

8 I=0 transfer ($4^{+}, 5^{+}$) from the g.s.

* Location i calculations nformation, $3 \mathrm{~s}_{1 / 2}$
- No SM
- Estimated to be few hundreds keV higher than the $\mathrm{I}=2$ states

$$
\nu 1 g_{9 / 2}^{-2} \otimes \nu 3 s_{1 / 2}^{2} \quad \text { States }
$$

- I=0 transfer from the isomeric state in 79 Zn
- $\mathrm{E}_{1 / 2+}=1.05 \mathrm{MeV} \& \mathrm{t}_{1 / 2} \geq 200 \mathrm{~ms}$
- Possible assignment as (1p-2h) excitations across $\mathrm{N}=50$ (PFSDG-U int.)
- Evidence for a 0^{+}intruder state

ISOLDE: X. F. Yang et al., PRL 116, 182502 (2016).

79Zn $\boldsymbol{v}(1 p-2 h)$

$\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1} \quad$ States

- $1=2$ transfer $\left(2^{+}, 3^{+}, \ldots, 7^{+}\right)$from the g.s., $9 / 2^{+}$
- Sensitive to the $\mathrm{N}=50$ shell gap due to monopole interaction
SM calculations exist only for 5^{+}and 6^{+}

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 3 s_{1 / 2}^{1} \quad \text { States }
$$

- $\mathrm{I}=0$ transfer $\left(4^{+}, 5^{+}\right)$from the g.s.
* Location i calculations nformation, $3 \mathrm{~s}_{1 / 2}$
- No SM
- Estimated to be few hundreds keV higher than the $\mathrm{I}=2$ states
$\mathrm{E}\left(0^{+}\right) \cong 2 \mathrm{MeV} \boldsymbol{\nu}(2 \mathrm{p}-2 \mathrm{~h})$

80Zn $\boldsymbol{\nu}(2 p-2 h)$

ISOLDE: X. F. Yang et al., PRL 116, 182502 (2016).

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1} \quad \text { States }
$$

- $1=2$ transfer $\left(2^{+}, 3^{+}, \ldots, 7^{+}\right)$from the g.s., $9 / 2^{+}$
- Sensitive to the $\mathrm{N}=50$ shell gap due to monopole interaction
SM calculations exist only for 5^{+}and 6^{+}

$$
\nu 1 g_{9 / 2}^{-1} \otimes \nu 3 s_{1 / 2}^{1} \quad \text { States }
$$

- $\mathrm{I}=0$ transfer $\left(4^{+}, 5^{+}\right)$from the g.s.
* Location i calculations nformation, $3 \mathrm{~s}_{1 / 2}$
- No SM
- Estimated to be few hundreds keV higher than the $\mathrm{I}=2$ states

$$
\nu 1 g_{9 / 2}^{-2} \otimes \nu 3 s_{1 / 2}^{2} \quad \text { States }
$$

- $\mathrm{I}=0$ transfer from the isomeric state in 79 Zn
- $E_{1 / 2+}=1.05 \mathrm{MeV} \& \mathrm{t}_{1 / 2} \geq 200 \mathrm{~ms}$
- Possible assignment as (1p-2h) excitations across N=50 (PFSDG-U int.)
- Evidence for a 0^{+}intruder state

2^{+}state at ISOLDE Coulomb excitation : J. Van de Walle et al., PRL 99, 142501 (2007).

RIKEN inelastic scattering and proton removal: ${ }^{9} \mathrm{Be}(80 \mathrm{Zn}, 80 \mathrm{Zn})$ and ${ }^{9} \mathrm{Be}\left({ }^{81} \mathrm{Ga}, 80 \mathrm{Zn}\right)$:
Y. Shiga et al., PRC 93024320 (2016).
$5^{+}, 6^{+}$: K. Sieja and F. Nowacki , PRC85 051301(R) (2012)

DWBA Calculations via FRESCO

Setup and Experiment

${ }^{79} \mathrm{Zn}(\mathrm{d}, \mathrm{p} \gamma)^{80 \mathrm{Zn}}$ inverse kinematics

Beam energy (79Zn)
Beam intensity on MINIBALL
Target thickness (CD_{2})
Cross sections

395 MeV ($5 \mathrm{MeV} /$ nuc)
$4 \lambda 10 / \mathrm{pps} \rightarrow 4 \times 10^{3} \mathrm{pps}$
1 mg $\mathrm{cm}^{2} \rightarrow 2 \mathrm{mg} / \mathrm{cm}^{2}$
DWBA via FRESCO

Isolde Database: $10^{6} \mathrm{pps} / \mu \mathrm{C}$ UCx
Suggested value from the earlier records: $\sim 5.10^{5} \mathrm{pps} / \mu \mathrm{\mu C}$ UCx
$1.6 \mu \mathrm{C}$ total proton intensity $+5 \%$ transmission eff. $==>\mathbf{4} \mathbf{x 1 0 ^ { 4 }} \mathbf{p p s}$ at MINIBALL
$\mathrm{Rb} / \mathrm{Ga}$ contamination: $\mathbf{4 \times 1 0 ^ { 3 }} \mathbf{~ p p s}$ recommended by TAC .

-TREX angular coverage: 60%

- MINIBALL efficiency on average 6% at 1 MeV
- Average cross section for $\nu 1 g_{9 / 2}^{-1} \otimes \nu 2 d_{5 / 2}^{1}$ states : 20 mb
- Average cross section for $\nu 1 g_{9 / 2}^{-1} \otimes \nu 3 s_{1 / 2}^{1}$ states : 28 mb
(particle- $\boldsymbol{\gamma}$)
(particle- $\boldsymbol{\gamma} \boldsymbol{\gamma}$)

Identification of states in the worst scenario:

Low-spin states have lower cross section and energy behaviour also follows a certain trend (parabola) .

One can use gamma-tagged proton angular distributions and see how this compares with the expected trends of the excitation energy and the s.p. cross sections.

Plus shell model calculations might be helpful.

	This proposal 79Zn(d,py)80Zn	Accepted proposal Spokesperson: R. Orlandi $\text { IS556 } \quad 80 Z n(d, p y)^{81 Z n}$
Beam intensity	$5 \times 10^{4} \mathrm{pps} / \mu \mathrm{C}$ at UCx $4 \times 10^{3} \mathrm{pps}$ at MINIBALL	$3 \times 10^{4} \mathrm{pps} / \mu \mathrm{C}$ at UCx $2.3 \times 10^{3} \mathrm{pps}$ at MINIBALL
Target thickness	$2 \mathrm{mg} / \mathrm{cm}^{2}$	$2 \mathrm{mg} / \mathrm{cm}^{2}$
Required beam time	7 days	7 days
Expected yield	$300 \mathrm{p} \gamma / 30 \mathrm{p} \gamma \gamma$ events for one $\mathrm{I}=2$ state $400 \mathrm{p} \gamma / 40 \mathrm{p} \gamma \gamma$ events for one $\mathrm{I}=0$ state	$350 \mathrm{p} \gamma$ events for the I=0 state, $1 / \mathbf{2}^{+}$

[^0]Alternative solution could be dropping the neutron converter (UCx + neutron converter + quartz line + RILIS)

Thank you

Additional slides

Shell gap from mass is correlated.
SM approach:
K. Sieja and F. Nowacki , PRC85 051301(R) (2012)
F. Nowacki et al., PRL 117, 272501 (2016)
A. Welker et al., PRL 119, 192502 (2017).

Correlation effects can be explored and help theory

Mean-field approach:
M. Bender et al. PRC78, 054312 (2008)

Momentum matching in transfer reactions

${ }^{60} \mathrm{Ni}\left(\alpha,{ }^{3} \mathrm{He}\right): \mathrm{Q}_{\text {g.s. }}=-12.8 \mathrm{MeV}->$ high momentum transfers ${ }^{60} \mathrm{Ni}(\mathrm{d}, \mathrm{p}): \mathrm{Q}_{\mathrm{g} . \mathrm{s} .}=5.6 \mathrm{MeV}$-> low momentum transfers

FIG. 8. Measured differential cross sections and DWBA fits for $l=2$ transitions. All fits are based on NLFR calculations using L/B parameters.

TABLE V. Summary of (d, p) results for levels in ${ }^{88} \mathrm{Sr}$.

Level No. ${ }^{\text {a }}$	E* (keV)	Cosman and Slater ${ }^{\text {a }}$			This experiment ${ }^{\text {b }}$			
							J^{π}	
		l	$G_{l J}{ }^{\text {c }}$	l	$G_{l j}^{88}$	$G_{i j}^{89}$	(assumed) ${ }^{\text {d }}$	$S_{l j}^{88}$
1	(1836)	2	0.126	2	(0.13)		2^{+}	0.25
5	4032	2	0.279	2	0.35		2^{+}	0.71
6	4294	2	0.376	2	0.53		4^{+}	0.59
7	4413	2	0.875	2	1.18		[5] ${ }^{+}$	1.07
8	(4450)	2	0.083	(2)	(~ 0.10)		$[4]^{+}$	(0.11)
10	4514	2	1.080	2	1.31		$[6]^{+}$	1.00
12	4633	2	0.564	2	0.68		[3] ${ }^{+}$	0.97
13	4744	2	0.805	2	0.14	5.86	$[4]^{+}$	0.28(0.16)
17	5094	2	1.040	2	1.33		$[7]^{+}$	0.89
			5.228		5.75	$\overline{5.86}$		
15	$4873{ }^{\text {e }}$	0	0.230	0	$0.24{ }^{\text {e }}$		[4] ${ }^{+}$	$0.26{ }^{\text {e }}$
21	5416	0	0.105	0	0.13		[5] ${ }^{+}$	0.12
22	5466	0	0.563	0	0.61		4^{+}	0.67
23	(5506)	0	0.027	(0)	<0.01			
25	5729	0	0.789	0	0.94		$[5]^{+}$	0.85
26	(5780)	0	0.405	0	$0(\pm 0.03)$	1.92		
32	(6214)	0	0.031	(0)	(~ 0.03)			
			2.150		1.95	1.92		

Equivalent of $5^{+}, 6^{+}$states in ${ }^{82} \mathrm{Ge}$ is found to be $13 / 2^{-}, 15 / 2^{-}$in ${ }^{83} \mathrm{As}$

SM Calculations:

A.F. Lisetskiy, B.A. Brown, M. Horoi, H. Grawe,

Phys. Rev. C 70 (2004) 044314.
Interaction: JJ4B + SDI
Model spaces: pfg9+sdg
Inert Core nucleus: ${ }^{56} \mathrm{Ni}$
Tensor interactions are included

The SPEs relative to the ${ }^{56} \mathrm{Ni}$ core have been derived from the SPEs with respect to the doubly-magic ${ }^{78} \mathrm{Ni}$ core.

Model Space	Single-Particle Energy_			
pfg	$\mathrm{E}\left(1 \mathrm{f}_{5 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{3 / 2}\right)$	$\mathrm{E}\left(2 \mathrm{p}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{9 / 2}\right)$
	-9.28590	-9.65660	-8.26950	-5.89440
sdg	$\mathrm{E}\left(2 \mathrm{~d}_{5 / 2}\right)$	$\mathrm{E}\left(3 \mathrm{~s}_{1 / 2}\right)$	$\mathrm{E}\left(1 \mathrm{~g}_{7 / 2}\right)$	
	-1.19440	-0.16800	0.2700	

$$
E\left(v d_{5 / 2}-v g_{9 / 2}\right)=\text { parameter }
$$

Weak r-process

Sensitivity study to the n-capture process in the context of neutron-rich supernova and collapsar accretion disk winds.

weak r process-a rapid neutron capture process that forms a solar-type $A \sim 80 r$-process peak and potentially nuclei up to the $A \sim 130$ peak.

Nuclear data relevant to r-process calculations are (pinparity assignments, excitation energies, spectroscopic factors and can be extracted from transfer reactions, such as (d, p).

Oslo method in inverse kinematics

${ }^{86} \mathrm{Kr}(\mathrm{d}, \mathrm{p}){ }^{87} \mathrm{Kr}$ iThemba
V. W. Ingeberg, Master thesis 2016
V.W.Ingeberg et al. Eur. Phys. J. A (2020) 56:68.

MINIBALL

+6 LaBr_{3}

V. Ingeberg, to be submitted to PRC, Feb 2022. V. Ingeberg, PhD thesis to be submitted, Feb 2022

Calculations by A.C. Larsen, Univ. of Oslo Temperature ($10^{9} \mathrm{~K}$)

A.C. Larsen et al., PRC 97, 054329 (2018)

[^0]: Future perspective: New neutron converter will increase expected yield as indicated in IS556. Test has been done Ref: J.P. Ramos et al., NIMB 463, 357 (2020).

