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(n, y) rate [cm3®mol~1s71]

rates for *2°Ru(n, y)
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| and r process involve
neutron-rich nuclei

We rely on theoretical
models

Experiments -> constrain
uncertainty
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Several anomalous elemental abundance ratios have been observed in the metal-poor star 8 8 ®

HD94028. We assume that its high [As/Ge] ratio is a product of a weak intermediate (i) neutron-
capture process. Given that observational errors are usually smaller than predicted nuclear gg g7 gg
physics uncertainties, we have first set-up a benchmark one-zone i-process nucleosynthesis

simulation results of which provide the best fit to the observed abundances. We have then 85 86 67
performed Monte Carlo simulations in which 113 relevant (n,y) reaction rates of unstable
species were randomly varied within Hauser-Feshbach model uncertainty ranges for each =t 9
reaction to estimate the impact on the predicted stellar abundances. One of the interesting — '~ '

results of these simulations is a double-peaked distribution of the As abundance, which is 60

caused by the variation of the Ga (n,y) cross-section. This variation strongly anticorrelates

with the predicted As abundance, confirming the necessity for improved theoretical or

experimental bounds on this cross-section. The N;j (n,y) reaction is found to behave as

a major bottleneck for the i-process nucleosynthesis. Our analysis finds the Pearson product—

moment correlation coefficient rp > 0.2 for all of the i-process elements with 32 < Z <

42, with significant changes in their predicted abundances showing up when the rate of this

reaction is reduced to its theoretically constrained lower bound. Our results are applicable to

any other stellar nucleosynthesis site with the similar i-process conditions, such as Sakurai’s

object (V4334 Sagittarii) or rapidly accreting white dwarfs.

Key words: nuclear reactions, nucleosynthesis, abundances —stars: abundances — stars: AGB
and post-AGB.
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Either clearer picture of the
| process, or uncovering
the need of a new, yet
unknown theory
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Experiment

MINIBALL + 6 LaBrs

target:CD2 T-REX

Steps:

A beam of °Ga is impinged
onto a CD, target
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Experiment

MINIBALL + 6 LaBrs

Steps:

A beam of °Ga is impinged
onto a CD, target

Detect p-y coincidences with
MINIBALL, Oslo’s LaBr3 and
T-REX

Calculate excitation energy
of "*Ga via kinematics

Make “raw” matrix
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Experiment

Data for **’Sb at OCL Oslo method (in inverse
| =z I kinematics)

.l

Unfolding

‘ | m . lv;lli.lmp ,,

First generation

Fermi’s golden rule:
P(Ey. Ex) o p(E — E, )T(Ey)

GSF:

21



Experiment

NLD [MeV~1]

106

105 4

104 4

103 4

102 4

10! 4

10° 4

101

Data for '#’Sb at OCL

—— Known levels -- S, I ® Oslodata ~--- S
® Oslo data —J— patsn i
Fitting intervals !
i
|
10-7 A
T
3
2
'
%]
o
i
P s | .. !
Preliminar T Preliminar |
\ 1
0 2 a 6 1 2 3 a4 5 6 7 8

Energy [MeV]

Energy [MeV]

9

From the NLD and the GSF
it is possible to retrieve the
(n,y) cross section using
the HF formalism
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MACS and capture rate for
A-1 nucleus

(Calculations with reaction
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from inverse kinematic reactions with the Oslo mett
‘This novel technique allows measurements of these pi X Waler ot . (1986)
et across a wide range of previously inaccessible nut R Baeratal. (2002
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S s compared to shell-model calculations, which sug,
this region to be dominated by M1 strength. The ySF
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Fig. 3 %Kr(n, y) cross sections. The red-hashed area represents the
total uncertainty based on both systematical and statstic errors. The
gray and blue lines are from the evaluation of ENDF/B-VILI [8] and
the TALYS defaultinput, respectively, and is provided for comparison.
“The black triangles shows the direct measurements of Bhike et al. [58],
the blue upside-down triangles are results from time-of-flight measure-
ments of Walter et al. [59] and the turquoise circles ae the results from
the activation measurements of Beer et al. [60]

- CT interpolation

d(*Kr,p)"'Kr (LaBr,:Ce)
From neutron res. data

Known levels

3

£ 100

2

s I

c

@

°

s 1°F

>

o

s
i
1
0

1 2 3 4 5
Excitation energy (MeV)

Fig. 1 Normalized ’Kr nuclear level densities for LaBrs:Ce (red cir-
cles) detectors. The black line shows the known levels while the open
square is the level density at the neutron separation energy. The dashed
line is the constant temperature interpolation. The error bars represent
the upper and lower uncertainty limit due to all known statistical and
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Fig. 2 y-ray strength function of $7Kr (red circles) compared with
the y-ray strength function of $0Kr extracted from $0Kr(y, ') (blue
triangles) [35] and $°Kr(y, n) (green squares) [36]. The solid black line

are results from

Shell Model caleulations with a "*Ni core (see Se

for details), while the red line is the microscopic HFB+QRPA prediction
[37] for the E1 strength. The error bars include all known statistical and
systematic errors

This has been done many

times before, also in
inverse kinematics
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Setup

‘ Previous experiment (IS559)

‘ Present case

%Ni + CDy — %"Ni + p

®Ga + CDy — ®Ga + p

E(%Ni) = 300 MeV (4.5 MeV/A)

E("Ga) = 350 MeV (4.6 MeV/A)

Tpoam = 4 x 10° pps at MINIBALL

Tpoar = 2.5 x 10° pps at MINIBALL

digrger = 0.6 mg/cm2

dtarget =1.0 mg/cm2

6 days of beamtime

6 days of beamtime

6 LaBr3 detectors from Oslo were far
from target position

6 LaBr3 detectors 5 cm closer to target
position

C-REX with only forward CD detector
covering 25° to 49°

T-REX with CD detector covering 27°
to 78° forward angle

1.5M good coincidences

Closely modelled to
experiment 1IS559 on *'Ni
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Setup

‘ Previous experiment (IS559)

‘ Present case

%Ni + CDy — %"Ni + p

®Ga + CDy — ®Ga + p

E(%Ni) = 300 MeV (4.5 MeV/A)

E("”Ga) = 350 MeV (4.6 MeV/A)

Tpoam = 4 x 10° pps at MINIBALL

Tpoar = 2.5 x 10° pps at MINIBALL

digrger = 0.6 mg/cmz

dtarget =1.0 mg/sz

6 days of beamtime

6 days of beamtime

6 LaBr3 detectors from Oslo were far
from target position

6 LaBr3 detectors 5 cm closer to target
position

C-REX with only forward CD detector
covering 25° to 49°

T-REX with CD detector covering 27°
to 78° forward angle

1.5M good coincidences

Closely modelled to
experiment 1IS559 on *'Ni

2.5e6 beam of 2005 might
not be replicated

Can the experiment be
carried out?
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The lower the beam yield,
the higher the uncertainty
-> risk of the experiment
being inconclusive
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The lower the beam yield,
the higher the uncertainty
-> risk of the experiment
being inconclusive

Oslo method: technically ok
with only ~100k
coincidences for non-exotic
nuclei
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The lower the beam yield,
the higher the uncertainty
-> risk of the experiment
being inconclusive

Oslo method: technically ok
with only ~100k
coincidences for non-exotic
nuclei

Require low energy states
for normalization

30



Convert Proposal to Lol

ADOPTED LEVELS, GAMMAS for 7Ga

Q(B-)=6916.3 kev 20  S(n)= 5903 keV 4  S(p)= 11027 keV 3  Q(a)= -8938.6 keV 24
Reference: 2012WA38

References:

A 7%zn B- decay (5.7 S)
S w2293 A @nze3) w2445 10 () 8.0 (24,34
P e e B e

We need a (more)
complete level scheme

'*Ga is odd-odd: many
levels, high statistics
needed
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Convert Proposal to Lol

ADOPTED LEVELS, GAMMAS for 7Ga

5903 keV 4  S(p)= 11027 keV 3

Citation: Nucl. Data Sheets 74,63 (1995) Cutoff date: 22-Dec-1994

Q(a)= -8938.6 kev 24

We need a (more)
complete level scheme

'*Ga is odd-odd: many
levels, high statistics
needed

Might be inconclusive for
less than 750k

coincidences

(corresponding to ~1.2e6

pps @ MINIBALL under the
same conditions) 32



Convert Proposal to Lol

Updated estimates on the
production of °Ga may be
needed to guarantee useful
statistics
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Convert Proposal to Lol

Updated estimates on the
production of °Ga may be
needed to guarantee useful
statistics

May convert this Proposal
to a Letter of Intent until
beam yields are clarified.
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Convert Proposal to Lol

Updated estimates on the
production of °Ga may be
needed to guarantee useful
statistics

May convert this Proposal
to a Letter of Intent until
beam yields are clarified.

Thank you
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