

KATRIN neutrino mass analysis

Arbeitstreffen Kernphysik – Schleching 2023

Leonard Köllenberger for the KATRIN collaboration | Monday 27th February 2023

www.kit.edu

Outline

- 1. Neutrino mass determination
- 2. The KATRIN experiment
- 3. Campaigns
- 4. Spectra fitting
- 5. Results
- 6. Outlook

Tritium β -decay

•0

3/21

Decay of molecular tritium produces a β -electron spectrum

$$\left(\frac{\mathrm{d}\Gamma}{\mathrm{d}E}\right)_{\mathrm{nucl.}} = C \cdot F\left(Z',E\right) \cdot p\left(E+m_{e}\right) \cdot \sqrt{\left(E+m_{e}\right)^{2}-m_{e}} \cdot \left(E_{0}-E\right) \cdot \sqrt{\left(E_{0}-E\right)^{2}-m_{v}^{2}}$$

 $\implies m_v^2 = \sum |U_i|^2 \cdot m_i^2$ can be determined with a precise measurement of the spectral shape near the endpoint

Integrated spectrum measurement

Leonard Köllenberger: KATRIN neutrino mass analysis

Institute for Astroparticle Physics

The KATRIN beamline

Goal: Measurement of the effective electron anti-neutrino mass with 0.2 eV sensitivity at 90 % C.L.

The integrated β -spectrum

The integrated β -spectrum

Integrated β-spectrum

$$\dot{N}(qU) = \operatorname{Sig} \cdot \int_{qU}^{E_0} \frac{\mathrm{d}\Gamma}{\mathrm{d}E} \left(E, m_{\nu}^2, E_0\right) \cdot R(qU, E) \mathrm{d}E + N_{\mathrm{bg}}$$

- In the most basic form, the spectrum can be _ characterised by:
 - Spectral amplituder: Sig
 - Endpoint: E₀
 - Squared neutrino mass: m_{ν}^2
 - Background: Nho
- In reality this gets a bit more complicated 😉

Neutrino mass determination Monday 27th February 2023 7/21

The KATRIN experiment 000

Campaigns

Spectra fitting

Results

Outlook Institute for Astroparticle Physics

Leonard Köllenberger: KATRIN neutrino mass analysis

Measurement campaigns

KATRIN Neutrino mass Measurements

	Time (hrs)	$ ho d\sigma$ (m $^{-2}$)	Bg (mcps)
KNM1	522	1.09×10^{21}	370
KNM2	294	$4.23 imes10^{21}$	278
KNM3a	220	$2.07 imes 10^{21}$	136
KNM3b	224	$3.73 imes10^{21}$	259
KNM4	1267	$3.79 imes 10^{21}$	150
KNM5	1232	$3.79 imes 10^{21}$	162

- Published results: KNM1 and KNM2 Phys. Rev. Lett. 123, 221802 Nat. Phys. 18, 160-166 (2022)
- Current analysis: KNM1 KNM5
- Data-taking: KNM6, KNM7, KNM8 _

Neutrino mass determination

Monday 27th February 2023 8/21

The KATRIN experiment

Campaigns **eo**oo

Leonard Köllenberger: KATRIN neutrino mass analysis

Spectra fitting

Results Outlook Institute for Astroparticle Physics

Measurement campaigns

KATRIN Neutrino mass Measurements

	Time (hrs)	$ ho d\sigma$ (m $^{-2}$)	Bg (mcps)
KNM1	522	1.09×10^{21}	370
KNM2	294	$4.23 imes10^{21}$	278
KNM3a	220	$2.07 imes10^{21}$	136
KNM3b	224	$3.73 imes10^{21}$	259
KNM4	1267	$3.79 imes10^{21}$	150
KNM5	1232	$3.79 imes 10^{21}$	162

- Published results: KNM1 and KNM2 Phys. Rev. Lett. 123, 221802 Nat. Phys. 18, 160-166 (2022)
- Current analysis: KNM1 KNM5
- Data-taking: KNM6, KNM7, KNM8 _

Results

Neutrino mass determination

Monday 27th February 2023 9/21

The KATRIN experiment

Campaigns 0000

Spectra fitting

Outlook Institute for Astroparticle Physics

Leonard Köllenberger: KATRIN neutrino mass analysis

Experimental input parameters

Run-wise fit parameters

- Experimental settings have been optimised
 - ⇒ Background significantly reduced
- Between KNM1 KNM5 1987 individual runs were recorded for each pixel
 - ⇒ 244 647 individual spectra taken into account in the analysis

\implies How do we combine the data?

Neutrino	mass determination
00	
11/21	Monday 27 th February 2023

Leonard Köllenberger: KATRIN neutrino mass analysis

Institute for Astroparticle Physics

Run combination

- Runs taken under similar conditions can be stacked into one spectrum
- Counts are summed, input parameters are averaged

Fit is performed with *i* contributing spectra of each campaign

- One minimisation
- One combined likelihood, \mathcal{L}

Campaigns

$$-\log \mathcal{L} = \sum_{i} -\log \mathcal{L}_{i}\left(m_{\mathbf{v}}^{2}, E_{0i}, \operatorname{Sig}_{i}, \operatorname{Bg}_{i}\right)$$

- One common neutrino mass, m_{χ}^2
- Multiple campaignwise E_0 , Sig, and Bg
- Principle was used in combined KNM1 KNM2 analysis (multi-period analysis)

Neutrino mass determination

12/21

Monday 27th February 2023

The KATRIN experiment

Spectra fitting ••••••

Results

Outlook Institute for Astroparticle Physics

Leonard Köllenberger: KATRIN neutrino mass analysis

Pixel combination

Fit is performed with *i* contributing spectra of each segment

 \implies One minimisation

Neutrino mass determination

13/21

Monday 27th February 2023

 \implies One combined likelihood, $\mathcal L$

$$-\log \mathcal{L} = \sum_{i} -\log \mathcal{L}_{i}\left(m_{v}^{2}, E_{0i}, \operatorname{Sig}_{i}, \operatorname{Bg}_{i}\right)$$

The KATRIN experiment

Campaigns

Leonard Köllenberger: KATRIN neutrino mass analysis

- One common neutrino mass, m_{ν}^2
- Multiple detector segmentwise E_0 , Sig, and Bg
- \implies Principle was used in KNM2 analysis (multi-ring analysis)

Detector segments with similar transmission conditions are grouped

- \implies Uniform (NAP setting)
- \implies Multi-patch (SAP setting)

Unbiased analysis

Analysis is performed in paralell by different fitting teams, using independent code

Model blinding:

- Additional broadening is applied to the model (FSD) $ightarrow \Delta m_{
 u}^2 = -2\sigma^2$
- Neutrino mass is shifted into an unknown direction
- Other fit parameters are uneffected

Three stage unblinding procedure

- 1.) Code validation on Asimov spectra
- 2.) Blinded analysis of data
- 3.) Final unblinded analysis of data

\implies Unbiased neutrino mass result

 Neutrino mass determination
 The KATRIN experiment
 Campaigns
 Spectra fitting
 Results
 Outlook

 00
 000
 000
 000
 000
 000
 000
 000

 14/21
 Monday 27th February 2023
 Leonard Köllenberger: KATRIN neutrino mass analysis
 Institute for Astroparticle Physics

Sources of systematic uncertainties

 Neutrino mass determination
 The KATRIN experiment
 Campaigns
 Spectra fitting
 Results
 Outlook

 ○
 ○○
 ○○○
 ○○○
 ○○○
 ○○
 ○○
 ○○

 15/21
 Monday 27th February 2023
 Leonard Köllenberger: KATRIN neutrino mass analysis
 Institute for Astroparticle Physics

Treatment of systematics

In the KNM1 and KNM2 analyses, systematics have been propagated via:

- ⇒ Pull term
- \implies Covariance matrix
- \implies Monte Carlo propagation
- → Markov Chain Monte Carlo (MCMC)

Future approach - pull term:

- Adding additional free parameters (θ_i)
- Constraining parameters with a penalty term
- \implies Adding pull terms widenes the χ^2 distribution:

$$\chi^2\left(\textit{\textbf{m}}_{\textit{v}}^2,\textit{\textbf{E}}_0,\textit{Sig},\textit{Bg},\theta_1,\ldots\right) + \frac{\left(\theta_1 - \hat{\theta}_1\right)^2}{\sigma_{\theta_*}^2} + \ldots$$

In the combined KNM1-5 analysis:

- Pull term as multivariate normal distribution
- Treatment of correlations between campaigns and segments

\implies \sim 280 fit parameter and \sim 100 correlations

Neutrino mass determination 00 16/21 Monday 27th February 2023 The KATRIN experiment

Spectra fitting ○○○○● Results

Leonard Köllenberger: KATRIN neutrino mass analysis

Latest KATRIN neutrino mass results – KNM1

First measurement campaign

Fit strategy: Stacked uniform fit

- \implies One spectrum with 27 data points
- \implies Four free fit parameters (m_{γ}^2 , E_0 , Sig, Bg)

Statistics dominated fit result

 $\textit{m}_{\nu}^2 = -1.0 \pm 1.0 \, \text{eV}^2$

Factor of \sim 2 improvement on previous $m_{
m v}$ limit

 $m_{
m v} < 1.1\,{
m eV}$ (90 % CL)

Phys. Rev. Lett. 123 (2019) 221802

17/21	Monday 27 th February 2023	Leonard Köllenberger: KATRIN neutrino mass analysis			Institute for Astropartic	cle Physics
00		000	0000	00000	•00	00
Neutrino m	ass determination	The KATRIN experiment	Campaigns	Spectra fitting	Results	Outlook

Latest KATRIN neutrino mass results – KNM2

Second measurement campaign

Fit strategy: Stacked multi-ring fit

 \implies 12 spectra with 12 \times 28 = 336 data points

 \implies 37 free fit parameters (m_{ν}^2 , 12· E_0 , 12·Sig, 12·Bg)

Statistics dominated fit result

 $m_{\nu}^2 = 0.26 \pm 0.34 \, {\rm eV}^2$

New sub-eV neutrino mass limit

 $m_{
m v} <$ 0.9 eV (90 % CL)

Nat. Phys. 18, 160-166 (2022)

 Neutrino mass determination
 The KATRIN experiment
 Campaigns
 Spectra fitting
 Results
 Outlook

 00
 000
 000
 0000
 0000
 0000
 0000
 0000

 18/21
 Monday 27th February 2023
 Leonard Köllenberger: KATRIN neutrino mass analysis
 Leonard Köllenberger: KATRIN neutrino mass analysis
 Institute for Astroparticle Physics

Latest KATRIN neutrino mass results - combined results

Fit strategy: Multi-period uniform fit

- \implies Data is stacked within the measurement phases
- \implies Two spectra with 27+28 = 55 data points
- \implies 7 free fit parameters (m_{ν}^2 , 2· E_0 , 2·Sig, 2·Bg)

Statistics dominated fit result

 $m_{\nu}^2 = 0.08 \pm 0.32 \, {\rm eV}^2$

Sub-eV upper limit on the neutrino mass

 $m_{
m v} < 0.8\,{
m eV}$ (90 % CL)

Nat. Phys. 18, 160-166 (2022)

Neutrino	mass determination	The KATRIN experiment	Campaigns	Spectra fitting	Results	Outlook
00		000	0000	00000	000	00
19/21	Monday 27 th February 2023	Leonard Köllenberger: KATRIN neutrino mass analysis			Institute for Astroparticle Physics	

Summary

Leading upper limit on the neutrino mass from direct single $\beta\text{-decay}$ measurements

 KATRIN combined analysis of KNM1 and KNM2 measurement campaigns

 $m_{
m v} < 0.8\,{
m eV}$ (90 % CL)

Nat. Phys. 18, 160-166 (2022)

The KATRIN experiment

Towards improved sensitivity

Monday 27th February 2023

Neutrino mass determination

20/21

- KATRIN combined analysis of KNM1 to KNM5 measurement campaigns is ongoing
- ⇒ Expected sensitivity <0.5 eV</p>

Leonard Köllenberger: KATRIN neutrino mass analysis

Campaigns

Future challenges and outlook

- KATRIN combined analysis of KNM1 KNM5 in progress
- Mixed multi-period, multi-patch analysis
 - \implies Combined fit of 45 spectra with one shared $m_{
 m v}^2$
- Treatment of systematics via pull terms
 - \implies Fit with \sim 280 fit parameters
- Combined fit is computationally challanging
- Currently two complementing approaches are persued to improve computation time:

The KATRIN experiment

- Model calculation through neural nets (arXiv:2201.04523)
- Improved computation performance

Neutrino mass determination

21/21

Monday 27th February 2023

Leonard Köllenberger: KATRIN neutrino mass analysis

Campaigns