A dark matter connection in a flavored axion model

Presented by Eduardo Rojas

In collaboration with: Y. Giraldo, R. Martínez, J.C. Salazar

Universidad de Nariño

eduro4000@gmail.com

$$
\text { June 1, } 2022
$$

Outline

(1) Strong CP problem
(2) The PQ solution.
(3) The hierarchy problem
(4) The model particle content.
(5) Low energy constraints
(6) A dark matter candidate
(7) Conclusions

The $U(1)_{A}$ problem

- In the limit whre the SM fermions are massless the QCD lagrangian has the symmetry $U(N)_{V} \otimes U(N)_{A}$, for the first family $N=2$. $U(2)_{V}=S U(2)_{V} \otimes U(1)_{V}=S U(2)_{\prime}$ isospin symmetry $\otimes U(1)_{B}$ Baryon number conservation.

The $U(1)_{A}$ problem

- In the limit whre the SM fermions are massless the QCD lagrangian has the symmetry $U(N)_{V} \otimes U(N)_{A}$, for the first family $N=2$. $U(2)_{V}=S U(2)_{V} \otimes U(1)_{V}=S U(2)_{\prime}$ isospin symmetry $\otimes U(1)_{B}$ Baryon number conservation.
- The global $U(2)_{A}=S U(2)_{A} \otimes U(1)_{A}$ symmetry is broken spontaneously by the quark condensate, thus, one expects 4 Nambu-Goldstone bosons $\left(\pi^{0}, \pi^{-}, \pi^{+}, \eta(?)\right)$, but η is too heavy. Although pions are light, there is no clue of another light state in the hadronic spectrum. Weinberg dubbed this the $U(1)_{A}$ problem, suggesting that, somehow, there was no $U(1)_{A}$ symmetry in QCD.

The Strong CP problem

'T Hooft realized that the current associated with the $U(1)_{A}$ symmetry is anomalous, i.e., $\partial_{\mu} J_{5}^{\mu}=\frac{g^{2} N}{32 \pi^{2}} F^{\mu \nu} \tilde{F}_{\mu \nu}$ where N is the number of massless quarks. From this it is possible to add to the lagrangian the CP violating term: $\mathcal{L}=\theta \frac{\mathrm{g}^{2} N}{32 \pi^{2}} F^{\mu \nu} \tilde{F}_{\mu \nu}$, which produces an electric dipole moment for the neutron $d_{n}=e\left(m_{q} / m_{n}\right) \theta \approx 10^{-16} \theta e-c m$. The current bound from PSI collaboration set $d_{n}<2.9 \times 10^{26} \mathrm{e}-\mathrm{cm}$. Why θ is so small?, this is the strong CP problem.

Paccei-Quinn Solution

- Peccei and Quinn suggested that the SM has an additional $U(1)_{P C}$ chiral (global) symmetry which drives $\theta \rightarrow 0$. This global $U(1)_{P Q}$ symmetry was named after Roberto Peccei and Helen Quinn.

What is our work about?

Our aim is to use the $U(1)_{P Q}$ symmetry to generate quark textures motivated from the data. In particular, we are interested in the hermitian textures

$$
\begin{align*}
M^{U} & =\left(\begin{array}{ccc}
0 & 0 & \left|C_{u}\right| e^{i \phi C_{u}} \\
0 & A_{u} & \left|B_{u}\right| e^{i \phi_{B_{u}}} \\
\left|C_{u}\right| e^{-i \phi C_{u}} & \left|B_{u}\right| e^{-i \phi_{B_{u}}} & D_{u}
\end{array}\right), \\
M^{D} & =\left(\begin{array}{ccc}
0 & \left|C_{d}\right| & 0 \\
\left|C_{d}\right| & 0 & \left|B_{d}\right| \\
0 & \left|B_{d}\right| & A_{d}
\end{array}\right), \tag{1}
\end{align*}
$$

The PQ charges of the SM fermions are:

Particles	Spin	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	$Q_{\mathrm{PQ}}(i=1)$	$Q_{\mathrm{PQ}}(i=2)$	$Q_{\mathrm{PQ}}(i=3)$	$U(1)_{\mathrm{PQ}}$
$q_{L i}$	$1 / 2$	3	2	$1 / 6$	$-2 s_{1}+2 s_{2}+\alpha$	$-s_{1}+s_{2}+\alpha$	α	$x_{q_{i}}$
$u_{R i}$	$1 / 2$	3	1	$2 / 3$	$s_{1}+\alpha$	$s_{2}+\alpha$	$-s_{1}+2 s_{2}+\alpha$	$x_{u_{i}}$
$d_{R i}$	$1 / 2$	3	1	$-1 / 3$	$2 s_{1}-3 s_{2}+\alpha$	$s_{1}-2 s_{2}+\alpha$	$-s_{2}+\alpha$	$x_{d_{i}}$
$\ell_{L i}$	$1 / 2$	1	2	$-1 / 2$	$-2 s_{1}+2 s_{2}+\alpha^{\prime}$	$-s_{1}+s_{2}+\alpha^{\prime}$	α^{\prime}	$x_{\ell_{i}}$
$e_{R i}$	$1 / 2$	1	1	-1	$2 s_{1}-3 s_{2}+\alpha^{\prime}$	$s_{1}-2 s_{2}+\alpha^{\prime}$	$-s_{2}+\alpha^{\prime}$	$x_{e_{i}}$
$\nu_{R i}$	$1 / 2$	1	1	0	$-4 s_{1}+5 s_{2}+\alpha^{\prime}$	$-s_{1}+2 s_{2}+\alpha^{\prime}$	$s_{2}+\alpha^{\prime}$	$x_{\nu_{i}}$

Table: The columns 6-8 are the PQ $\left(Q_{P Q}\right)$ charges for the $S M$ quarks in each family. The subindex $i=1,2,3$ stands for the family number in the interaction basis. The parameters s_{1}, s_{2} and α are reals. The normalized charges are $\hat{s}_{1,2}=\frac{9}{N} s_{1,2}$ and additionally $\hat{s}_{2}=\left(\epsilon+\hat{s}_{1}\right)$. The heavy quark PQ charges satisfy $x_{L}-x_{R}=N(1-\epsilon)$, with $\epsilon \neq 0$.

In order to generate these matrices at least 4 higgs doublets are needed.

Particles	Spin	$S U(3)_{C}$	$S U(2)_{L}$	$U(1)_{Y}$	Q_{PQ}	$U(1)_{\mathrm{PQ}}$
Φ_{1}	0	1	2	$1 / 2$	s_{1}	$x_{\phi_{1}}$
Φ_{2}	0	1	2	$1 / 2$	s_{2}	$x_{\phi_{2}}$
Φ_{3}	0	1	2	$1 / 2$	$-s_{1}+2 s_{2}$	$x_{\phi_{3}}$
Φ_{4}	0	1	2	$1 / 2$	$-3 s_{1}+4 s_{2}$	$x_{\phi_{4}}$
S_{1}	0	1	1	0	$x_{S_{1}}=s_{1}-s_{2} \neq 0$	x_{S}
S_{2}	0	1	1	0	$x_{S_{2}}=x_{R}-x_{L} \neq 0$	x_{S}
Q_{L}	$1 / 2$	3	0	0	$x_{Q_{L}}-x_{Q_{R}} \neq 0$	$x_{Q_{L}}$
Q_{R}	$1 / 2$	3	0	0	$x_{Q_{R}}$	

Table: Beyond SM scalar and fermion fields and their respective PQ charges. The parameters s_{1}, s_{2} and α are reals, with $s_{1} \neq s_{2}$. The parameters s_{1}, s_{2} and α are reals. The normalized charges are $\hat{s}_{1,2}=\frac{9}{N} s_{1,2}$ and additionally $\hat{s}_{2}=\left(\epsilon+\hat{s}_{1}\right)$. The heavy quark PQ charges satisfy $x_{L}-x_{R}=N(1-\epsilon)$, with $\epsilon \neq 0$.

by choosing the VEV in a convenient way it is possible to

 reproduce the quark masses and the CKM mixing matrix and Yukawa couplings of order 1.$$
\begin{equation*}
Y_{i j}^{U, D} \sim 1 . \tag{2}
\end{equation*}
$$

So, by setting various Yukawa (for quarks) couplings close to 1 (except $y_{23}^{U 2}, y_{23}^{D 3}$ and $\left.y_{13}^{U 1}\right)$ we obtain:

$$
\begin{equation*}
\hat{v}_{1}=1.71 \mathrm{GeV}, \quad \hat{v}_{2}=2.91 \mathrm{GeV}, \quad \hat{v}_{3}=174.085 \mathrm{GeV}, \quad \hat{v}_{4}=13.3 \mathrm{MeV} \tag{3}
\end{equation*}
$$

High energy Lagrangian

$$
\begin{align*}
\mathcal{L}_{\mathrm{LO}} & \supset\left(D_{\mu} \Phi^{\alpha}\right)^{\dagger} D^{\mu} \Phi^{\alpha}+\sum_{\psi} i \bar{\psi} \gamma^{\mu} D_{\mu} \psi+\sum_{i=1}^{2}\left(D_{\mu} S_{i}\right)^{\dagger} D^{\mu} S_{i} \\
& -\left(\bar{q}_{L i} y_{i j}^{D \alpha} \Phi^{\alpha} d_{R j}+\bar{q}_{L i} y_{i j}^{U \alpha} \tilde{\Phi}^{\alpha} u_{R j}\right. \\
& \left.+\bar{\ell}_{L i} y_{i j}^{E \alpha} \Phi^{\alpha} e_{R j}+\bar{\ell}_{L i} y_{i j}^{N \alpha} \tilde{\Phi}^{\alpha} \nu_{R j}+\text { h.c }\right) \\
+ & \left(\lambda_{Q} \bar{Q}_{R} Q_{L} S_{2}+\text { h.c }\right)-V\left(\Phi, S_{1}, S_{2}\right), \tag{4}
\end{align*}
$$

Scalar Potential

$$
\begin{align*}
V\left(\Phi, S_{i}\right) & =\sum_{i=1}^{4} \mu_{i}^{2} \Phi_{i}^{\dagger} \Phi_{i}+\sum_{k=1}^{2} \mu_{s_{k}}^{2} S_{k}^{*} S_{k}+\sum_{i=1}^{4} \lambda_{i}\left(\Phi_{i}^{\dagger} \Phi_{i}\right)^{2} \\
& +\sum_{k=1}^{2} \lambda_{s_{k}}\left(S_{k}^{*} S_{k}\right)^{2}+\sum_{i=1}^{4} \sum_{k=1}^{2} \lambda_{i s_{k}}\left(\Phi_{i}^{\dagger} \Phi_{i}\right)\left(S_{k}^{*} S_{k}\right) \\
& +\underbrace{\sum_{i, j=1}^{4}}_{i<j}\left(\lambda_{i j}\left(\Phi_{i}^{\dagger} \Phi_{i}\right)\left(\Phi_{j}^{\dagger} \Phi_{j}\right)+J_{i j}\left(\Phi_{i}^{\dagger} \Phi_{j}\right)\left(\Phi_{j}^{\dagger} \Phi_{i}\right)\right) \\
& +\lambda_{s_{1} s_{2}}\left(S_{1}^{*} S_{1}\right)\left(S_{2}^{*} S_{2}\right) \\
& +K_{1}\left(\left(\Phi_{1}^{\dagger} \Phi_{2}\right)\left(\Phi_{3}^{\dagger} \Phi_{2}\right)+\text { h.c. }\right) \\
& +K_{2}\left(\left(\Phi_{3}^{\dagger} \Phi_{4}\right)\left(\Phi_{3}^{\dagger} \Phi_{1}\right)+\text { h.c. }\right) \\
& +F_{1}\left(\left(\Phi_{2}^{\dagger} \Phi_{3}\right) S_{1}+\text { h.c. }\right) \\
& +F_{2}\left(\left(\Phi_{1}^{\dagger} \Phi_{2}\right) S_{1}+\text { h.c. }\right) \\
& +\frac{1}{2}\left(m_{\zeta_{S_{2}}}\right)_{S B}^{2} \zeta_{S_{2}}^{2}+\frac{1}{2}\left(m_{\xi_{S_{2}}}\right)_{S B}^{2} \xi_{S_{2}}^{2} . \tag{5}
\end{align*}
$$

It is possible to obtain dimension five effective lagrangians by means of the non-linear transformation

$$
\begin{align*}
& S^{i} \longrightarrow e^{i \frac{x}{S^{i}}} \frac{1}{\Lambda} S^{i} \\
& \phi^{\alpha} \longrightarrow e^{i \frac{{ }_{\phi} \alpha}{\Lambda}} a \phi^{\alpha}, \\
& \psi_{L} \longrightarrow e^{i \frac{{ }^{\gamma_{\nu}}}{\Lambda}} a \psi_{L} \\
& \psi_{R} \longrightarrow e^{i \frac{{ }^{x} \psi_{R}}{\Lambda}} a \psi_{R}, \tag{6}
\end{align*}
$$

Effective quark-axion interaction vertex.

from $\mathcal{L}_{K^{\Psi}}$ we obtain the flavour-violating derivative couplings:

$$
\begin{equation*}
\Delta \mathcal{L}_{K^{D}}=-\partial_{\mu} a \bar{d}_{i} \gamma^{\mu}\left(g_{a f, f_{j}}^{v}+\gamma^{5} g_{a f_{i} f_{j}}^{A}\right) d_{j}, \tag{7}
\end{equation*}
$$

where;

$$
\begin{equation*}
g_{a d_{i} d_{j}}^{V, A}=\frac{1}{2 f_{a} C_{3}^{\text {eff }}} \Delta_{V, A}^{D i j}, \tag{8}
\end{equation*}
$$

In this expression we made the substitution $\Lambda=f_{a} c_{3}^{\text {eff }}$. The axial and vector couplings are:

$$
\begin{equation*}
\Delta_{V, A}^{D i j}=\Delta_{R R}^{D i j}(d) \pm \Delta_{L L}^{D i j}(q) \tag{9}
\end{equation*}
$$

with $\Delta_{L L}^{F i j}(q)=\left(U_{L}^{D} x_{q} U_{L}^{D \dagger}\right)^{i j}$ and $\Delta_{R R}^{F i j}(d)=\left(U_{R}^{D} x_{d} U_{R}^{D \dagger}\right)^{i j}$.

Constraints from Semileptonic decays

it is shown that the decay widths of pseudoscalar $K^{ \pm}(B)$ mesons into an axion and a charged pion (vector K^{*}) are given by

$$
\begin{align*}
\Gamma\left(K^{ \pm} \rightarrow \pi^{ \pm} a\right) & =\frac{m_{K}^{3}}{16 \pi}\left(1-\frac{m_{\pi}^{2}}{m_{K}^{2}}\right)^{2} \lambda_{K \pi a}^{1 / 2} f_{0}^{2}\left(m_{a}^{2}\right)\left|g_{a d s}^{V}\right|^{2} \\
\Gamma\left(B \rightarrow K^{*} a\right) & =\frac{m_{B}^{3}}{16 \pi} \lambda_{B K^{*} a}^{3 / 2} A_{0}^{2}\left(m_{a}^{2}\right)\left|g_{a s b}^{A}\right|^{2} \tag{10}
\end{align*}
$$

where $\lambda_{M m a}=\left(1-\frac{\left(m_{a}+m\right)^{2}}{M^{2}}\right)\left(1-\frac{\left(m_{a}-m\right)^{2}}{M^{2}}\right)$

Constraints from Semileptonic decays

Collaboration	Upper bound
E949+E787 [1, 2]	$\mathcal{B}\left(K^{+} \rightarrow \pi^{+} a\right)<0.73 \times 10^{-10}$
CLEO [3]	$\mathcal{B}\left(B^{ \pm} \rightarrow \pi^{ \pm} a\right)<4.9 \times 10^{-5}$
CLEO [3]	$\mathcal{B}\left(B^{ \pm} \rightarrow K^{ \pm} a\right)<4.9 \times 10^{-5}$
BELLE [4]	$\mathcal{B}\left(B^{ \pm} \rightarrow \rho^{ \pm} a\right)<21.3 \times 10^{-5}$
BELLE [4]	$\mathcal{B}\left(B^{ \pm} \rightarrow K^{* \pm} a\right)<4.0 \times 10^{-5}$

Table: These inequalities come from the window for new physics in the branching ratio uncertainty of the meson decay in a pair $\bar{\nu} \nu$.

Frame Title

Figure: Tree level diagram contribution to the FCNC processes $K^{ \pm} \rightarrow \pi^{ \pm} a$ and $B^{ \pm} \rightarrow K^{* \pm} a$.

Frame Title

Figure: Allowed regions for semileptonic meson decays. We use the relation $m_{a} \approx 0.5 m_{\pi} \frac{f_{\pi}}{f_{a}} \sim 0.5 \frac{m_{\pi}^{2}}{f_{a}}$ between the axion mass and the decay constant f_{a}.

Frame Title

Figure: The excluded parameter space by various experiments corresponds to the colored regions, the dashed-lines correspond to the projected bounds of coming experiments looking for axion signals, the blue region corresponds to the parameter space scanned by our model in the interval $-1 \leq \epsilon \leq 1$.

S_{1} and S_{2} potential.

$$
\begin{align*}
V\left(\Phi, S_{i}\right) & =\sum_{k=1}^{2} \mu_{s_{k}}^{2} S_{k}^{*} S_{k} \\
& +\sum_{k=1}^{2} \lambda_{s_{k}}\left(S_{k}^{*} S_{k}\right)^{2}+\sum_{i=1}^{4} \sum_{k=1}^{2} \lambda_{i s_{k}}\left(\Phi_{i}^{\dagger} \Phi_{i}\right)\left(S_{k}^{*} S_{k}\right) \\
& +\lambda_{s_{1} S_{2}}\left(S_{1}^{*} S_{1}\right)\left(S_{2}^{*} S_{2}\right) \\
& +F_{1}\left(\left(\Phi_{2}^{\dagger} \Phi_{3}\right) S_{1}+\text { h.c. }\right) \\
& +F_{2}\left(\left(\Phi_{1}^{\dagger} \Phi_{2}\right) S_{1}+\text { h.c. }\right) \\
& +\frac{1}{2}\left(m_{\zeta_{S_{2}}}\right)_{\mathrm{SB}}^{2} \zeta_{S_{2}}^{2}+\frac{1}{2}\left(m_{\xi_{S_{2}}}\right)_{\mathrm{SB}}^{2} \xi_{S_{2} .}^{2} \tag{12}
\end{align*}
$$

In these expressions $S_{i}=\frac{{ }^{v} S_{i}+\xi_{S_{i}}+i \zeta_{S_{i}}}{\sqrt{2}} ; i=1,2$.

dark matter connexion

Figure: The scalar potential $V\left(\phi_{\alpha}, S_{1}, S_{2}\right)$ is invariant under the symmetry $S_{2} \longrightarrow S_{2}^{\dagger}$ (which is equivalent to a Z_{2} symmetry), but this symmetry is broken by the interaction term $\lambda_{Q} \bar{Q}_{R} Q_{L} S_{2}+$ h.c.. In fact, from this interaction, it is also possible to generate, at one loop, a mass term for the CP-odd field $\frac{1}{2}\left(m_{\zeta_{S_{2}}}\right)_{S B}^{2} \zeta_{S_{2}}^{2}$ in the effective Weinberg-Coleman potential.

Conclusions

O In this work we have proposed a PQ symmetry that gives rise to quark mass matrices with five texture-zeros. This texture can adjust in a non-trivial way the six masses of the quarks and the three CKM mixing angles and the CP violating phase.
O Since in our model the PQ charges are non-universal there are FCNC at the tree level. We calculated the tree level FCNC couplings from the effective interaction Lagrangian between the kinetic term of the quarks and the axion, these couplings are well known in the literature.

- The model has as a candidate for dark matter a pseudo-scalar field, which is identical to that of the Complex Singlet Extension of the Standard Model.

Scalar Potential

1. "Appears and dissapears." Burchell et al (1998)
2. Appears and dissapears.

Scalar Potential

3. Reappears

- Appears;
- Appears
- Appears
- Appears

Descriptive statistics

Add an image or table.

Name	Turn		Height
Juan	1		1.9
Jose	2		1.7
Michael	3	1.95	

Model

$$
\begin{equation*}
Y_{i}=\beta_{0}+\beta_{1} X_{i}+\beta_{2} X_{2 i}+\beta_{3} \text { Other }_{i}+\gamma S_{i}+u_{i} \tag{13}
\end{equation*}
$$

Y: Externality
 - Var1.
 - Var2.
 - Var3.
 - Var4.

- Var8.1
- Var8.2.
- Var8.3.
- Median income.
- Median home value.

S: State dummies

Outline

(1) Strong CP problem
(2) The PQ solution.
(3) The hierarchy problem
(4) The model particle content.
(5) Low energy constraints
(6) A dark matter candidate
(7) Conclusions

Frame title

Name	Turn	Height
Juan	1	
Jose	2	1.9
Michael	3	1.7

ReSULT

Result

Name	Turn	Height
Juan	1	1.9
Jose	2	1.7
Michael	3	1.95

Discussion

1. Comment1
2. Comment2.
3. Comment3.
4. Comment4.

Frame Title

(R. Adler et al., "Measurement of the K+-i pi+ nu nu branching ratio," Phys. Rev. D, vol. 77, p. 052003, 2008.
固 A. Artamonov et al., "New measurement of the $K^{+} \rightarrow \pi^{+} \nu \bar{\nu}$ branching ratio," Phys. Rev. Lett., vol. 101, p. 191802, 2008.
R. Ammar et al., "Search for the familon via B+--i pi+- X0, B+--i K+- X0, and B0 -i K0(S)X0 decays," Phys. Rev. Lett., vol. 87, p. 271801, 2001.

目 O. Lutz et al., "Search for $B \rightarrow h^{(*)} \nu \bar{\nu}$ with the full Belle $\Upsilon(4 S)$ data sample," Phys. Rev. D, vol. 87, no. 11, p. 111103, 2013.

