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Evidences for Dark Matter
Several observations indicate the existence of non-luminous
Dark Matter (missing gravitational force) at very different scales!

* Galactic rotation curves
* RC in Clusters of galaxies
* Clusters of galaxies
* CMB anisotropies
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Dark Matter: WIMP vs FIMP

WIMP
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Dark Matter: WIMP vs FIMP

WIMP FIMP
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What if DM only couples to the SM
via gravitational interactions?
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What if DM only couples to the SM
via gravitational interactions?

DM is unavoidably produced
by a number of gravitational processes!
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1. DM from PBHs
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* Density fluctuations can collapse into a PBH in the early universe

* Lose mass by emitting all particles via Hawking evaporation
→ PBH have a ~black body spectrum, with temperature TBH ~ 1/MBH

→ PBHs unavoidable radiate DM!

* If Min < 109 g, PBH completely evaporate before BBN
→ poorly constrained

 

Effective theory: Two free parameters
* A single PBH characterized by its mass at formation Min

(or equivalently, by the SM temperature Tin at formation)

* Initial PBH energy density β = ρBH/ρSM

* Initial spin a*

Primordial Black Holes
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* Density fluctuations can collapse into a PBH in the early universe

* Lose mass by emitting all particles via Hawking evaporation
→ PBH have a ~black body spectrum, with temperature TBH ~ 1/MBH

→ PBHs unavoidable radiate DM!

* If Min < 109 g, PBH completely evaporate before BBN
→ poorly constrained

 

Effective theory: Three free parameters
* A single PBH characterized by its mass at formation Min

(or equivalently, by the SM temperature Tin at formation)

* Initial spin a*

* Initial PBH energy density β = ρBH/ρSM

Primordial Black Holes



Nicolás BERNAL @ UAN 10

DM density = PBH density   x    # DM emitted per PBH

Number of DM particles radiated per PBH
→ Only depends on initial PBH mass!

As PBH scale like non-relativistic matter,
they can dominate the total energy density of the universe

→ Nonstandard expansion!

DM from PBHs
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DM from PBHs

PBH dominationRadiation domination
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DM from PBHs
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DM from PBHs
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2. Self-interacting DM from PBHs
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● If DM possess sizable self-interactions:
→ DM thermalizes
→ Number-changing interactions: 2↔3, 2↔4...

* What is the energy transferred from PHBs to DM?
* What is the DM temperature?     (kinetic equilibrium)

* What is DM equilibrium number density?     (chemical equilibrium)

Self-interactions:
→ Increase the DM density
→ Decrease the mean DM kinetic energy

Self-interacting DM from PBHs
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Self-interacting DM from PBHs

* DM production more efficient → smaller β could be explored

* DM cools down → keV DM becomes viable

* Model independent result
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Self-interacting DM from PBHs

* DM production more efficient → smaller β could be explored

* DM cools down → keV DM becomes viable

* Model independent result
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3. Gravitational UV freeze-in
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DM from PBHs

=
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DM from PBHs

=

Heavy DM
+

high temperatures
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Gravitational UV Freeze-in

An example of UV FIMP, mediated by massless SM gravitons

SM

SM

DM

DM

Depends on:
* DM mass and spin
* Reheating temperature T

rh

     → No free couplings: M
P

  Ωh2 ~ m * (T
rh
/M

P
)3
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Gravitational UV Freeze-in

An example of UV FIMP, mediated by massless SM gravitons

SM

SM

DM

DM
Heavy DM

+
high temperatures

 
Depends on:

* DM mass and spin
* Reheating temperature T
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Gravitational DM: PBHs & UV Freeze-in

Gravitational UV freeze-in strongly constrains super heavy DM radiated by PBHs!
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Gravitational DM: PBHs & UV Freeze-in

Gravitational UV freeze-in strongly constrains super heavy DM radiated by PBHs!
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4. Superradiance
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Superradiance in a Nutshell

* Ball scattering off a cylinder with lossy surface slows down
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Superradiance in a Nutshell

* Ball scattering off a cylinder with lossy surface slows down

* Ball scattering off a rotating cylinder can increase angular momentum and energy

* Effect depends on dissipation, necessary to change velocity
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Superradiance in a Nutshell

* A wave scattering off a rotating BH can increase in amplitude
       by extracting angular momentum and energy

* Dissipation necessary to increase wave amplitude

→ Angular velocity of BH horizon bigger that angular velocity of the wave
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Superradiance in a Nutshell

* Particles/waves trapped near a BH repeat this process continuously

* “BH bomb”
→ exponential instability when surround BH by a mirror
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Superradiance in a Nutshell

* Particles/waves trapped near a BH repeat this process continuously

* “BH bomb”
→ exponential instability when surround BH by a mirror

* For massive particles,
gravitational potential barrier provides trapping

* High superradiance rate:
Compton wavelength comparable to BH radius
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Superradiance in a Nutshell

* Particles/waves trapped near a BH repeat this process continuously

* “BH bomb”
→ exponential instability when surround BH by a mirror

* For massive particles,
gravitational potential barrier provides trapping

* High superradiance rate:
Compton wavelength comparable to BH radius

* Formation of bound states:
→ “Gravitational atoms”
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PBHs with Superradiance
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PBHs with Superradiance
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PBHs with Superradiance
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PBHs with Superradiance
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Hawking, Superradiance & UV Freeze-in

m
dm

 = 1015 GeV
m

dm
 = 1012 GeV

m
dm

 = 109 GeV
m

dm
 = 106 GeV

* Hawking radiation
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Hawking, Superradiance & UV Freeze-in

* Hawking radiation

* Superradiance

* UV freeze-in

m
dm

 = 1015 GeV
m

dm
 = 1012 GeV

m
dm

 = 109 GeV
m

dm
 = 106 GeV
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PBHs and Gravitational DM
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● It’s possible that DM only features gravitational interactions
● PBHs formed in the early universe
● 0.1 g < Min < 109 g evaporate before BBN
● PBHs could Hawing radiate the whole DM density
● DM masses: 1 MeV < mDM < 1018 GeV
● DM self-interactions:

→ boost DM density
Boost factors of several order of magnitude can be computed in a model independent way!

→ cools down DM: keV DM becomes viable
● Gravitational DM production is unavoidable!
● Gravitational UV freeze-in effective for heavy DM and high reheating temperatures
● PBH superradiance effective for Kerr BHs, when Compton length = PBH radius
● All gravitational channels have to be taken into account!

Conclusions
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Muchas gracias!
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5. QCD Axion and PBHs
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Producing Axion DM: Misalignment

Effective axion potential

Evolution of the axion field
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Producing Axion DM: Misalignment

Effective axion potential

Evolution of the axion field



Nicolás BERNAL @ UAN 51

Axions from PBHs: Dark Radiation

As these axions are ultra-relativistic:
→ can’t be the cold DM
→ contribute to dark radiation 

within the reach of future CMB-S4 experiment!
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Misalignment with PBHs
Even if axions radiated by PBHs can’t be the DM, PBHs can have a strong 
impact on the DM genesis via the misalignment mechanism

Non-standard cosmological evolution:
→ enhanced Hubble expansion rate
→ entropy injection by PBH evaporation
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Misalignment with PBHs
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Misalignment with PBHs
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6. ALPs and PBHs
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QCD Axion and ALPs with PBHs
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