

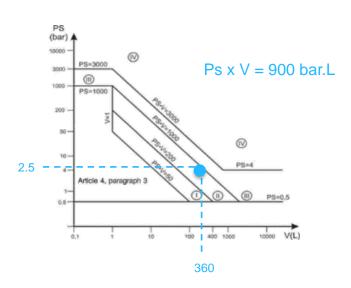
Equipment safety & safety aspects in the LHC tunnel

N.Grada for the HL-LHC PSO

Engineering Design Review of DFM 18.01.2022

Agenda

- Review of CDR close-out recommendations
- Conformity compliance strategy
- Radiation protection aspects
- Cryogenic safety aspects
- Electrical safety aspects
- Next steps



Recommendations from the DFM CDR

- Recommendation #3
- [...] the radioprotection aspects make any intervention (apart from the first installation) critical for ALARA considerations.
- The plan for maintenance and reparation must be developed taking into account this aspects.
- More detailed sequence for all these operations are expected at the DDR review.
 - Detailed sequence for maintenance & repair will follow F2 test bench to include empirical knowledge (c.f. P.Cruikshank's talk #1)
- Recommendation #4
 - The DFM design and its technical documentation has to coherently address the point of the design standard applied (PED) and consequent requirements all along the procurement, assembly and testing phases.
 - ✓ Design standard will be presented and justified. Requirements will be addressed.
- The exact role of HSE should be identified and clarified.
- ✓ HSE guidance used for the conformity compliance strategy. HSE's role is clear.
- The integration of burst disk, rated valve and relief plates must be done together WP15 and HSE.
 - √ Final integration of pressure safety devices made considering best safety practices.

DFM PED category & requirements

PED Category	Conformity Assessment Module	Comment
SEP	N/A	Equipment must be designed and manufactured following sound engineering practice. No involvement of notified body.
Category I	Module A	CE marking with no notified body involvement, self-certifying.
Category III	Module A2	Notified bodyperforms:nexpected whexpected robeids and monitors fasaeassessment.
	Module D1	Notified body performs unexpected checks and assesses production QA.
	Module E1	Notified body performs unexpected checks and asseses final testing QA.
Category III	B1+F	Notified body approves the design, examines and tests the vessel.
Category IV	G	Further involvement of the notified body.

Conformity compliance strategy

- Design made by CERN acc. to EN13445-3
- Manufacturing by SOTON via UK industrial partner (UK2 agreement)
- Manufacturer choses the notified body as per Module A2
- Manufacturer responsible for the technical documentation, the final assessment and for drawing up the EU declaration of conformity for CE certification
- Notified body will confirm that the final inspection, the proof test and the safety devices are in line with Sec. 3.2 of the ESR (Annex I of the PED)
- No involvement of HSE before reception at CERN. Connection to the interfacing equipment in the LHC tunnel (DSHM, QXL, D2) under HSE supervision.

Radiation protection safety

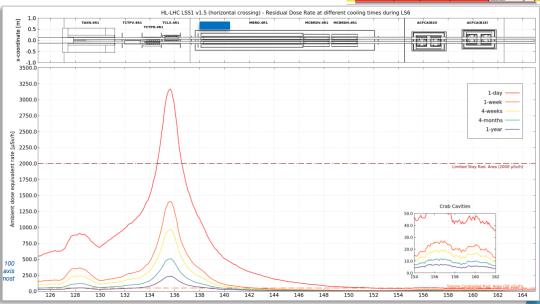
Manufacturing

 Stainless steel cobalt content < 0.1 wt% where possible. Any deviation will be the subject of a derogation request.

Assembly & integration

- Highly integrated zone of the tunnel with no margin to locate DFM elsewhere.
- Assembly procedures will be developed following ALARA recommendations.

Maintenance & repair


- Only very urgent interventions after 1 week cooldown.
- Complex environment above D2 will anyway require a mock-up where intervention procedures (including ALARA) can be optimised.

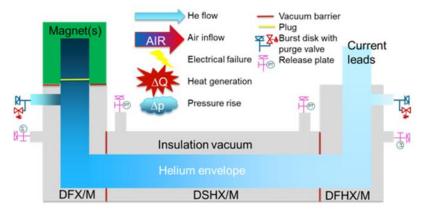
Dismantling

- Disassembly procedure will be developed following ALARA.
- Collimators removed first, D2 removal prior to DFM dismantling preferred.

 Not very time-critical

Residual dose rate in the D2 area (P1R) at different cooling times during LS6

Cryogenic safety


- Position of safety devices approved by HSE
- Height of pressure relief devices wrt tunnel's floor between 2300 mm and 2600 mm: no risk of direct projection of cold helium gas on transport side.
- Safety relief device sizing (by Y.Leclercq)
- Data
- Cold surfaces exposed to Vacuum : 3.5 m2 (2.2 m² wet surface)
- 30 layers MLI on helium vessel
- Helium volumes in nominal operation : 210 liters liquid + 150 liters gaseous
- Input
- Vacuum break on 30 MLI layers : 0.2 W/cm2
- Power dissipated in liquid: 7 kW
- Relief device sizing according to ISO21013-3
- Qm = 0.5 kg/s (1.4 kg/s for 10 layers)
- Drelief > 17 mm (28 mm for 10 layers)
- ✓ Sizing of DFM burst disk covers the dimensioning scenario with margin.
- ✓ Relief plates sizing checked at CDR: 2 DN100 on either side of the VB.
- Staggering protection concept (c.f talk of V.Gahier)

Electrical safety aspects

- All failure modes identified & described in edms <u>2303664</u>
- All electrical failure modes quantified in edms <u>2382265</u> (risk assessment for DFX conservatively cover those for DFM)
- All electrical failure modes mitigated in edms <u>2610846</u> (mitigations for DFX conservatively cover those for DFM)

4.0 Symbols in Failure Mode Schematics

Next steps

- Submit technical report with safety device calculation to HSE for approval.
 - Discuss and agree in advance who will be the designated notified body (e.g SOTON / External contractor).
 - Detailed sequence for maintenance & repair to be finalised following F2 test bench.

Thank you for your attention