Exploring CP symmetry in the interaction of Higgs boson with top quark at the ATLAS experiment

Supervisors: Jelena Jovicevic Lidija Zivkovic Marko Matovic Ana Manojlovic Natalija Randjelovic P4

HSSIP CERN 2022.

Overview

- Introduction to CP violation
- Search for the CP violation in the Higgs sector
- Measurement of the CP properties of the Higgs-top coupling our project;
 - Search for observables sensitive to CP properties
 - Projection of the current ATLAS results for LHC Run3 and HL-LHC
- Discussion of the result.

Antimatter and antiparticles

- Negative energy solution to Dirac's equation
- Seen in detectors using magnetic fields
- Different charge
- Annihilates with matter

Matter-Antimatter asymmetry

- Much more matter than antimatter
- After the Big Bang: same amount
- Nbaryons/Nphotons $\cong 6*10^{-10}$

Symmetries

Continuous/discrete symmetries

 Space translation, Time shift, Rotation symmetries

- Discrete symmetries:
 - Spatial sign flip (P)
 - Charge sign flip (C)
 - Time sign flip (T)

Quantity		P	С	T
Space vector	x	- x	x	x
Time	t	t	t	-t
Momentum	p	-р	p	- p
Spin	s	s	s	-s
Electrical field	E	-E	- E	E
Magnetic field	В	В	-В	- B

Mme Wu's Experiment

 Parity conserved in QED and QCD, expected to be conserved in weak interactions as well;

 Look at spin of decays products of polarized radioactive nucleus

• Electrons were emitted in the directions opposite the ^{60}Co spin and different was expected

⁶⁰Co polarization decreases as a function of time as the temperature increases

C, P, CP

CP violation observed with kaons

$$K_S \to \pi\pi$$
 [CP even]
 $K_I \to \pi\pi\pi$ [CP odd]

- Far from a production point of a kaon beam only three pion decays are expected
- However, two pion decays are also observed, but with a low rate

Weak interactions violate CP symmetry

Violation observed in laboratories don't fully explain the Baryon asymmetry

Higgs boson CP properties

- The Higgs boson CP properties are measured in the production and decay channels
- The Higgs-top Yukawa coupling is the largest coupling in the SM and any deviation wr.t SM prediction can indicate a presence of new physics -measured only in the production ttH production.
- We observe ttH production channel because Higgs decay on top quark is very rare
- Only $\gamma\gamma$ and bb decay are fit for studies at ATLAS and CMS experiments

Samples

$$\mathcal{L} = -\frac{m_t}{V} \overline{\Psi}_T K'_T(\cos(\alpha) + i \sin(\alpha) \gamma^5) \Psi_T H$$

- This part of Lagrangian explains Higgs interaction with top quark depending on the angle $\alpha(0^{\circ}-90^{\circ})$ mixing angle
- $\alpha = 0$ pure CP-even
- $\alpha = 90$ pure CP-odd (max violation)

 Both CP-even and CP-odd processes were generated using MadGraphaMC@NLO generator https://launchpad.net/mg5amcnlo;

ttH production and event selection

- The idea of our project was to study the CP properties in the ttH.H->bb decay
- Event selection:
- 1 lepton (e or μ)
- 6 jets
- 4 b-tagged jets (originating from b-quarks)

Parameters we've observed

Reconstructed vs Truth

Reconstructed Higgs Candidate pT

Truth Higgs pT

Latest ATLAS results

New H \rightarrow b \bar{b} result (2022)

Disfavors pure CP odd: 1.2σ

Uncertainty of measurement of the

mixing angle: 38% (28% systematic

component)

Using full Run 2 data with 139 fb^-1

Reference:

https://cds.cern.ch/record/2805772

 $H \rightarrow \gamma \gamma$ result (2020):

Excludes pure CP odd : 3.9σ

Uncertainty of measurement of the

mixing angle: 23%

- negligible component from the

systematic uncertainty.

Reference:

https://journals.aps.org/prl/abstract/10.11

03/PhysRevLett.125.061802

Projections for the future

Increasing the amount of data lowers the statistical uncertainty

• Run 3: $300 fb^{-1}$

• HL-LHC: $3000 fb^{-1}$

Relative uncertainty of	300 fb^{-1} with no systematic improvement	300 fb^{-1} with double systematic improvement	3000 fb^{-1} with no systematic improvement	3000 fb^{-1} with double systematic improvement
bb	30,79%	18,41%	28,53%	14,3%
γγ	10,67%	10,67%	1,067%	1,067%

Summary

- The CP-violation that could explain asymmetry between matter and anti-matter has been studies in the particle experiments for decades.
- Discovery of the Higgs boson opens a new window for the CP violation search in the Higgs boson interactions;
- Our project was to study the CP properties in the Higgs-top Yukawa coupling in the ttH. H->bb process using simulated ATLAS samples;
- We studies several observable and found out that pT(Higgs) is the sensitive observable that can be used in the measurement;
- Another task of the project was to make projections and estimate the precision ATLAS can achieve with Run 3 data and at HL-LHC.

Thank you for your attention

