Montecarlo and LHC

Giacomo Polesello INFN, Sezione di Pavia

Introduction

As an experimental LHC physicist I would like to highlight a key contribution of Paolo to the success of the LHC program, his tireless work in trying to bring experimental and theory communities together

- to optimise our usage of Monte Carlos through education of the experimentalist on the features and limits inherent in MonteCarlo generators
- to optimise the lines of generator development giving the theorists a better understanding of the experimental needs.

As a tribute to this work I'll try to give a personal view of how much the results of the LHC experiments depend on work of development on the physics generators which has taken place in the last 25 years

An example

Workshop called by Paolo in 2006 to educate the Italian LHC community to Monte Carlos

Workshop's Organizing Committee

V. Del Duca, B. Mele, P. Nason, G. Polesello (ATLAS), R. Tenchini (CMS)

PROCEEDINGS OF THE WORKSHOP ON MONTE CARLO'S, PHYSICS AND SIMULATIONS AT THE LHC

Editor Paolo Nason

I normally give to read The intro to shower MCs by Paolo in this volume to my new students

PREFACE

These proceedings collect the presentations given at the first three meetings Workshop on Monte Carlo's, Physics and Simulations at the LH", held on February 27-28, May 22-24 and October 23-25 2006 in Frascati (Italy). The purpose of the workshop, sponsored by the INFN, was to bring together all the complementary Italian scientific communities interested into high p_T physics at the LHC. The workshop was thus attended by LHC experimental physicists, theoretical physicists dedicated to the calculation of matrix elements for collider processes and to the implementation of Monte Carlo programs, and theoretical physicists interested into model building and physics beyond the Standard Model. Theoretical Standard Model prediction, as well as physics signals from new models, are made available to the experimental community as Monte Carlo generators, that thus constitute the meeting points of the three communities mentioned above. The aim of the workshop was essentially to start to talk to each other, and to begin to understand the methods, the problems, and the language of the complementary communities.

Archeology: from the ATLAS TDR (1999)

In the physics evaluation presented in this volume, the Standard Model physics and Higgs searches were mostly simulated with PYTHIAOISAJET was used extensively for the supersymmetry studies but some analyses have been done also with the supersymmetric extension of PY-THIA [14-23]. HERWIG has been used for some of the QCD studies. The model of the hadronic

The QCD multi-jet production is a dominant background for *e.g.* Higgs searches in the multi-jet final state. The production of events with three or more high-*p*_T jets is not well modelled by lowest-order di-jet processes convoluted with parton showers. To illustrate the large discrepancy between exact matrix element calculations and parton shower approaches in this case, Table 14-1 gives rates for one, three and four jet final states as given by the exact multi-parton matrix element NJETS Monte Carlo [14-15] and PYTHIA. On the other hand, heavy flavour content of jets is not modelled with the NJETS Monte Carlo. Simulation of four *b*-jet final states has been therefore only possible with the PYTHIA generator, which has the heavy flavour content of the partonic shower implemented.

In the case of di-jet production in association with a W or Z the VECBOS Monte Carlo [14-16], dedicated to this process, has been used. Exact matrix-element calculations were used also for estimating the expected cross-section in the case of $Wb\bar{b}$ [14-18] and $Zb\bar{b}$ [14-19] production. In the first case a modified version of HERWIG [14-18] was used, while in the second case the EUROJET Monte Carlo [14-21] was adopted.

- 14-15 F.A. Berends and H. Kuijf, Nucl.Phys.B353 (1991) 59.
- F.A. Berends, H. Kuijf, B. Tausk and W.T. Giele, Nucl.Phys.B357 (1991) 32;
 W. Giele, E. Glover, D. Kosower, Nucl. Phys. B403 (1993) 633.
- 14-18 M.L. Mangano, Nucl. Phys. B405 (1993) 536.
- 14-19 B. van Eijk and R. Kleiss, in [14-24], page 183.

But we knew we needed more!

Talk given by GP at Les Houches Workshop 1999, based on talk by D. Denegri and D. Froidevaux the year before

Event Generators

- Can we arrive at definite prescriptions on how to combine parton shower approach to higher order matrix elements?
- Need classification of cases where the parton shower approach badly fails providing accurate predictions
- QED vs. QCD radiation for light quarks
- Need consistent way of introducing new calculations
- Uncertainties in fragmentation/hadronisation
- Minimum bias and underlying event

 Can we arrive at definite prescriptions on how to combine parton shower approach to higher order matrix elements?

1999

Where are we now?

From an inspection of recent papers of ATLAS and CMS, three different prescriptions for NLO-PS match are in use as a baseline samples

NNLO+ parton shower simulations are being phased in:

CMS study of pt(II) dependence or Z production as a function of the m(II) mass bin

Excellent agreement off-peak low pt(II) for MiNNLOps NLLO+ parton shower simulations are being phased in:

ATLAS measurement of Higgs differential production cross-section In $\gamma\gamma$ and 4I channels

arXiv:2207.08615

 Need classification of cases where the parton shower 1999 approach badly fails providing accurate predictions SM backgrounds: Monte Carlo issues SUSY processes: high multiplicity of final state jets from cascade decays Slide of SUSY Require high jet multiplicity to reject backgrounds: ~ 4 jets lectures I gave circa 2004 Additional jets in $t\bar{t}, W, Z$, production from QCD radiation ME Two possible way of generating additional jets: 0000000 • Parton showering (PS): good in collinear region, but un-2000000 0000000 PS derestimates emission of high- p_T jets ME Matrix Element (ME): requires cuts at generation to regularize collinear and infrared divergences Optimal description of events with both ME and PS switched on Need prescription to avoid double counting, i.e. kinematic configurations produced by both techniques Additional issue: normalisation (no NLO calculation possible) 9

• Need classification of cases where the parton shower

approach badly fails providing accurate predictions

1999

What do experiments do now for multileg?

ATLAS Multileg configuration of baseline SM samples for Run2 analyses:

W/Z+ jets: SHERPA 2.2.1 V+0,1,2j NLO, 3,4jLO Alternate:

MG5_aMC+PY8 V+0-4J LO

Under validation

SHERPA 2.2.11 V+0,1,2j NLO 3,4,5LO MG5_amC+PY8 FxFx V+0-3JNLO Dibosons:

SHERPA 2.2.2 V+0,1jatNLO, 2,3jLO ttbb:

NLO ME in 4fs POWHEG-BOX RES

Continuing work to improve on Z+jets

What is the impact of these tools on LHC results?

The glory of SM

Standa	d Model Production Cross Section Measurements Status: February 2022	∫£ dt [fb ^{−1}]	Reference
Jets R=0.4		3.2	JHEP 05 (2018) 195
Dijets R=0.4	ATLAS Preliminary	3.2	JHEP 05 (2018) 195
Ý		3.2	PLB 2017 04 072
N	$\sqrt{s} = 5,13 \text{ TeV}$	0.081	PLB 759 (2016) 601
v		0.025	EPJC 79 (2019) 128
,	P	3.2	JHEP 02 (2017) 117
2	V	0.025	EPJC 79 (2019) 128
-		36.1	EPJC 80 (2020) 528
ŧ	Theory	0.3	ATLAS-CONF-2021-003
-chan (tot.)		3.2	JHEP 04 (2017) 086
Vt	LHC pp $\sqrt{s} = 13 \text{ TeV}$	3.2	JHEP 01 (2018) 63
Zj	Data stat	139	JHEP 07 (2020) 124
VW (tot.)	stat⊕ syst	36.1	EPJC 79 (2019) 884
VZ (tot.)	LHC pp $\sqrt{s} = 5$ TeV	36.1	EPJC 79 (2019) 535
Z (tot.)		36.1	PRD 97 (2018) 032005
γ	stat ⊕ syst	139	JHEP 11 (2021) 169
γ		36.1	JHEP 03 (2020) 054
ŧw (tot.)		36.1	PRD 99, 072009 (2019)
τ Ζ (tot.)		139	Eur. Phys. J. C 81 (2021) 73
Ēγ		36.1	EPJC 79 (2019) 382
Ĵ j EWK		139	EPJC 81 (2021) 163
vww		139	arXiv:2201.13045
WWZ		79.8	PLB 798 (2019) 134913
ttt (tot.)		139	JHEP 11 (2021) 118
γ јј ЕWK		139	ATLAS-CONF-2021-038
γγ→WW		139	PLB 816 (2021) 136190
V [±] W [±] jj еwк		36.1	PRL 123, 161801 (2019)
VZjjewk		36.1	PLB 793 (92019) 469
Zjj емк		139	arXiv:2004.10612
	0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 data/theory	4	

Example: ATLAS 13 TeV ttbar 11 cross-section

Category	$rac{\Delta \sigma_{ ext{fid}}}{\sigma_{ ext{fid}}}$ [%]	$\frac{\Delta\sigma_{\rm inc}}{\sigma_{\rm inc}}$ [%]					
Signal modelling							
$t\bar{t}$ shower/hadronisation	±2.8	±2.9					
$t\bar{t}$ scale variations	±1.4	± 2.0					
Top $p_{\rm T}$ NNLO reweighting	± 0.4	±1.1					
$t\bar{t} h_{damp}$	±1.5	±1.4					
tī PDF	±1.4	±1.5					
Background modelling							
MC background modelling	±1.8	±2.0					
Multijet background	± 0.8	±0.6					
Detector modelling							
Jet reconstruction	±2.5	±2.6					
Luminosity	±1.7	±1.7					
Flavour tagging	± 1.2	±1.3					
$E_{\rm T}^{\rm miss}$ + pile-up	±0.3	±0.3					
Muon reconstruction	±0.6	± 0.5					
Electron reconstruction	±0.7	±0.6					
Simulation stat. uncertainty	±0.6	±0.7					
Total systematic uncertainty	±4.3	±4.6					
Data statistical uncertainty	± 0.05	± 0.05					
Total uncertainty	±4.3	±4.6					

Phys. Lett. B 810 (2020) 135797

Bulk analysis: desired signal dominates background with very moderate fiducial

Systematics both from signal modelling as from detector modelling small, a few percent

Example: ATLAS Wt cross-section at 8 TeV

Source	Uncertainty [%]
Jet energy scale	10
b-tagging	8
Jet energy resolution	7
$E_{\rm T}^{\rm miss}$ reconstruction	7
Lepton reconstruction	4
Luminosity	3
Jet vertex fraction	3
<i>tī</i> radiation	10
<i>tW</i> radiation	9
$tW-t\bar{t}$ interference	7
$t\bar{t}$ cross-section normalisation	6
Other background cross-section normalisations	5
tW and $t\bar{t}$ parton shower	4
tW and $t\bar{t}$ NLO matching	3
PDF	1
Model statistics	11
Data statistics	4
Total	27

Eur. Phys. J. C 81 (2021) 720

Search-like analysis: fight with much larger background: Need to apply selections relying on detailed kinematics

 \rightarrow large modelling errors

Systematic error on modelling

Detector Modelling

Trigger efficency Jet energy scale and resolution Lepton energy scale and efficiency Etmiss soft component b-tagging Luminosity Pileup modelling

Relative impact of the two groups strongly Depends on the analysis

Physics Modelling

Missing Higher orders (scale variations) PDFs NLO matching Initial State Radiation Final State Radiation Underlying Event B-fragmentation Fragmentation

Physics modelling of top production

Theoretical uncertainties on MC modelling: ttbar

Systematic	ATLAS	CMS		
Nominal	PowhegPythia8			
PDFs	PDF4LHC recommendations			
NLO matching	Powheg vs MC@NLO	MC@NLO as cross-check but reweights top p⊤to NNLO		
Initial State Radiation	7-point va + independer	triations of $\mu_R^{ m ME}, \mu_F^{ m ME}$ Int variations of $h_{ m damp}, \mu_R^{ m PS, ISR}$		
Final State Radiation	Variations of $\mu_R^{ m PS,FSR}$			
Underlying Event	Tune variations (<i>A14/CP5</i>) + different CR models			
B-fragmentation		rameter in Pythia8 Peterson fragmentation)		
Fragmentation/ Hadronisation	Pythia8 vs Herwig7	Pythia6 vs Herwig++ (only impact on jet response)		
ttbar/Wt interference DR vs DS in Powheg				

Study all possible variations of key parameters or compare different implementations

Slide from talk by S.Amoroso at TOP2020 ¹⁹

Huge and protracted investment in tuning the parameters of top simulation and evaluating the relative uncertainties

♦ Group ♦	Document number 🕈	Date 🕴	√s (TeV) ♦	Links
search	search	search		
HIGG	ATL-PHYS- PUB-2022-026	2022-05-23	13	Documents Internal
PMGR	ATL-PHYS- PUB-2022-006	2022-02-25	13	Documents Internal
TOPQ	ATL-PHYS- PUB-2021-042	2021-12-01	13	Documents Internal
PMGR	ATL-PHYS- PUB-2020-024	2020-09-16	13	Documents Internal
PMGR	ATL-PHYS- PUB-2018-009	2018-07-04	13	Documents Internal
PMGR	ATL-PHYS- PUB-2017-007	2017-05-01	13	Documents Internal
k PMGR	ATL-PHYS- PUB-2016-016	2016-08-04	13	Documents Internal
PMGR	ATL-PHYS- PUB-2016-011	2016-05-17	13	Documents Internal
PMGR	ATL-PHYS- PUB-2016-005	2016-01-12	13	Documents Internal
PMGR	ATL-PHYS- PUB-2016-004	2016-01-11	13	Documents Internal
	search HIGG PMGR TOPQ PMGR PMGR PMGR MGR	searchsearchHIGGATL-PHYS- PUB-2022-026PMGRATL-PHYS- PUB-2022-006TOPQATL-PHYS- PUB-2021-042PMGRATL-PHYS- PUB-2020-024PMGRATL-PHYS- PUB-2018-009PMGRATL-PHYS- PUB-2018-009PMGRATL-PHYS- PUB-2016-016PMGRATL-PHYS- PUB-2016-016PMGRATL-PHYS- PUB-2016-016PMGRATL-PHYS- PUB-2016-016PMGRATL-PHYS- PUB-2016-015PMGRATL-PHYS- PUB-2016-005PMGRATL-PHYS- PUB-2016-005	SearchSearchHIGGATL-PHYS- PUB-2022-0262022-05-23PMGRATL-PHYS- PUB-2022-0062022-02-25TOPQATL-PHYS- PUB-2021-0422021-12-01PMGRATL-PHYS- PUB-2020-0242020-09-16PMGRATL-PHYS- PUB-2018-0092018-07-04PMGRATL-PHYS- PUB-2018-0092018-07-04PMGRATL-PHYS- PUB-2017-0072017-05-01KPMGRATL-PHYS- PUB-2016-0162016-08-04PMGRATL-PHYS- PUB-2016-0162016-05-17PMGRATL-PHYS- PUB-2016-0112016-01-12PMGRATL-PHYS- PUB-2016-0052016-01-12	Search Search Search HIGG ATL-PHYS- PUB-2022-026 2022-05-23 13 PMGR ATL-PHYS- PUB-2022-006 2022-02-25 13 TOPQ ATL-PHYS- PUB-2021-042 2021-12-01 13 PMGR ATL-PHYS- PUB-2020-024 2020-09-16 13 PMGR ATL-PHYS- PUB-2018-009 2018-07-04 13 PMGR ATL-PHYS- PUB-2017-007 2017-05-01 13 PMGR ATL-PHYS- PUB-2016-016 2016-08-04 13 PMGR ATL-PHYS- PUB-2016-016 2016-05-17 13 PMGR ATL-PHYS- PUB-2016-005 2016-01-12 13 PMGR ATL-PHYS- PUB-2016-005 2016-01-12 13

ATLAS Physics Modelling public results

An example: the h_{damp} parameter

• In POWHEG matching the amount of real radiation to exponentiate is regulated by the factor $h_{damp}^2/(h_{damp}^2+p_T^2)$, where h_{damp} is to be tuned with data(N_{jets} , $p_T(top)$, $p_T(j1)$, $p_T(tt)$)

Uncertainty on h_{damp}

CMS fits h_{damp} 1.58+0.66 -0.59, ATLAS uses h_{damp} =1.5 with uncertainty from a symmetrised h_{damp} =3 variation

ATL-PHYS-PUB-2020-023

Searches

ATLAS Heavy Particle Searches* - 95% CL Upper Exclusion Limits

Status: July 2022

ATLAS Preliminary $\int \mathcal{L} dt = (3.6 - 139) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ, γ	Jets†	₣miss	∫£ dt[fb	5	t = (3.0 - 139) lb	$\sqrt{3} = 0, 10 10$
	Model	ι,γ	Jels	Т	JZ utin			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WV \rightarrow \ell \gamma qq$ Bulk RS $g_{KK} \rightarrow tt$ 2UED / RPP	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 2 \gamma \\ - \\ 2 \gamma \\ \\ multi-channe \\ 1 \ e, \mu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array}$	1 - 4j 2j $\ge 3j$ - 2j/1J $\ge 1 b, \ge 1J/2$ $\ge 2 b, \ge 3j$		139 36.7 139 3.6 139 36.1 139 36.1 36.1 36.1	M _S 8.6 M _{th} 9.	$ \begin{array}{llllllllllllllllllllllllllllllllllll$	2102.10874 1707.04147 1910.08447 1512.02586 2102.13405 1808.02380 2004.14636 1804.10823 1803.09678
Gauge bosons	$\begin{array}{l} \text{SSM } Z' \to \ell\ell \\ \text{SSM } Z' \to \tau\tau \\ \text{Leptophobic } Z' \to bb \\ \text{Leptophobic } Z' \to tt \\ \text{SSM } W' \to \ell\nu \\ \text{SSM } W' \to \tau\nu \\ \text{SSM } W' \to tb \\ \text{HVT } W' \to WZ \to \ell\nu q\ell \text{ model } \\ \text{HVT } W' \to WZ \to \ell\nu \ell\ell' \text{ model } \\ \text{HVT } W' \to WH \to \ell\nu b \text{ model } \\ \text{HVT } W' \to ZH \to \ell\ell \ell b \text{ model } \\ \text{HVT } W \to ZH \to \ell\ell \ell b \text{ model } \\ \text{LRSM } W_R \to \mu N_R \end{array}$	IC 3 <i>e</i> ,μ Β 1 <i>e</i> ,μ	- 2 b ≥1 b, ≥2 c - 2 j / 1 J 2 j (VBF) 1-2 b, 1-0 1-2 b, 1-0 1 J	Yes Yes I – Yes Yes j Yes	139 36.1 36.1 139 139 139 139 139 139 139 139 139 80	Z' mass 5.1 TeV Z' mass 2.42 TeV Z' mass 2.1 TeV Z' mass 4.1 TeV W' mass 6.0 TeV W' mass 5.0 TeV W' mass 4.4 TeV W' mass 4.3 TeV W' mass 340 GeV W' mass 3.3 TeV Z' mass 3.2 TeV W _m mass 5.0 TeV	$\Gamma/m = 1.2\%$ $g_V = 3$ $g_V c_H = 1, g_f = 0$ $g_V = 3$ $g_V = 3$ $m(N_R) = 0.5 \text{ TeV}, g_L = g_R$	1903.06248 1709.07242 1805.09299 2005.05138 1906.05609 ATLAS-CONF-2021-025 ATLAS-CONF-2021-043 2004.14636 ATLAS-CONF-2022-005 2207.00230 2207.00230 1904.12679
CI	Cl qqqq Cl l ^l qq Cl eebs Cl µµbs Cl tttt	2 e, μ 2 e 2 μ ≥1 e,μ	2 j - 1 b 1 b ≥1 b, ≥1 j	- - - Yes	37.0 139 139 139 36.1	Λ Λ Λ Λ Λ 2.0 TeV Λ 2.57 TeV	21.8 TeV η_{LL}^- 35.8 TeV η_{LL}^- $g_* = 1$ $g_* = 1$ $ C_{4t} = 4\pi$	1703.09127 2006.12946 2105.13847 2105.13847 1811.02305
MQ	Axial-vector med. (Dirac DM) Pseudo-scalar med. (Dirac DM) Vector med. Z'-2HDM (Dirac DM Pseudo-scalar med. 2HDM+a	$\begin{array}{c} 0 \ e, \mu, \tau, \gamma \\ 0 \ e, \mu, \tau, \gamma \\ 1 \end{array} \\ 0 \ e, \mu \\ multi-channe \end{array}$	1 – 4 j 1 – 4 j 2 b	Yes Yes Yes	139 139 139 139	mmed mmed mmed 2.1 TeV 376 GeV 3.1 TeV mmed 560 GeV	$\begin{array}{l} g_q = 0.25, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ g_q = 1, \ g_{\chi} = 1, \ m(\chi) = 1 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 0.8, \ m(\chi) = 100 \ {\rm GeV} \\ {\rm tan} \beta = 1, \ g_{\chi} = 1, \ m(\chi) = 10 \ {\rm GeV} \end{array}$	2102.10874 2102.10874 2108.13391 ATLAS-CONF-2021-036
DT	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Scalar LQ 3 rd gen Vector LQ 3 rd gen	$2 e 2 \mu 1 \tau 0 e, \mu \ge 2 e, \mu, \ge 1 \tau 0 e, \mu, \ge 1 \tau 1 \tau$		-	139 139 139 139 139 139 139	LQ mass 1.8 TeV LQ mass 1.7 TeV LQ" mass 1.2 TeV LQ" mass 1.2 TeV LQ" mass 1.24 TeV LQ" mass 1.24 TeV LQ" mass 1.26 TeV LQ" mass 1.26 TeV LQ" mass 1.77 TeV	$\begin{array}{l} \beta=1\\ \beta=1\\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime}\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime}\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime}\rightarrow t\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime}\rightarrow b\tau)=1\\ \mathcal{B}(\mathrm{LQ}_3^{\prime\prime}\rightarrow b\tau)=0.5, \mbox{ YM coupl.} \end{array}$	2006.05872 2006.05872 2108.07665 2004.14060 2101.11582 2101.12527 2108.07665
Vector-like fermions	$ \begin{array}{l} VLQ\;TT \rightarrow Zt + X \\ VLQ\;BB \rightarrow Wt/Zb + X \\ VLQ\;T_{5/3}\;T_{5/3}\;T_{5/3} \rightarrow Wt + X \\ VLQ\;T \rightarrow Ht/Zt \\ VLQ\;Y \rightarrow Wb \\ VLQ\;Y \rightarrow Hb \\ VLL\;\tau' \rightarrow Z\tau/H\tau \end{array} $	1 e, µ	 ≥1 b, ≥1 j ≥1 b, ≥3 j ≥1 b, ≥1 j ≥2b, ≥1j, ≥	Yes Yes Yes	139 36.1 36.1 139 36.1 139 139	T mass 1.4 TeV B mass 1.34 TeV T _{5/3} mass 1.64 TeV T mass 1.8 TeV Y mass 1.85 TeV B mass 2.0 TeV	$\begin{array}{l} {\rm SU(2)\ doublet}\\ {\rm SU(2)\ doublet}\\ {\mathcal B}(T_{5/3} \rightarrow Wt)=1,\ c(T_{5/3}Wt)=1\\ {\rm SU(2)\ singlet,}\ \kappa_{T}=0.5\\ {\mathcal B}(Y \rightarrow Wb)=1,\ c_{F}(Wb)=1\\ {\rm SU(2)\ doublet,}\ \kappa_{B}=0.3\\ {\rm SU(2)\ doublet}\end{array}$	ATLAS-CONF-2021-024 1808.02343 1807.11883 ATLAS-CONF-2021-040 1812.07343 ATLAS-CONF-2021-018 ATLAS-CONF-2022-044
Excited	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited lepton ℓ^* Excited lepton ν^*	- 1 γ - 3 e,μ 3 e,μ,τ	2 j 1 j 1 b, 1 j - -		139 36.7 139 20.3 20.3	q* mass 6.7 TeV q* mass 5.3 TeV b* mass 3.2 TeV 3.0 TeV ** mass 1.6 TeV	only u^* and d^* , $\Lambda = m(q^*)$ only u^* and d^* , $\Lambda = m(q^*)$ $\Lambda = 3.0$ TeV $\Lambda = 1.6$ TeV	1910.08447 1709.10440 1910.0447 1411.2921 1411.2921
Other	Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Multi-charged particles Magnetic monopoles $\sqrt{s} = 8 \text{ TeV}$	2,3,4 e, μ 2 μ 2,3,4 e, μ (SS 2,3,4 e, μ (SS 3 e, μ , τ - - = 13 TeV rtial data	≥2 j 2 j various - - - √s = 1; full d		139 36.1 139 139 20.3 139 34.4	Nº mass 910 GeV Ne mass 3.2 TeV H** mass 350 GeV H** mass 1.08 TeV H** mass 400 GeV multi-charged particle mass 1.59 TeV monopole mass 2.37 TeV 10 ⁻¹ 1		2202.02039 1809.11105 2101.11961 ATLAS-CONF-2022-010 1411.2921 ATLAS-CONF-2022-034 1905.10130

*Only a selection of the available mass limits on new states or phenomena is shown.

†Small-radius (large-radius) jets are denoted by the letter j (J).

Searches

• By construction searches try to define depopulated corners in the kinematics space of the SM.

A typical search with signal XS at the fb level needs to reduce the ttbar background by 5 orders of magnitude

- The fact that in hundreds of regions considered the number of events predicted is matched by the observation in data is a huge triumph for SM
- The search results are only as good as the prediction of the expected number of events in the signal region
- Generic approach to estimate:
 - Do not believe MonteCarlo normalisation in very small corner of multidimensional parameter space
 - Believe that ratio of predicted events in two contiguous regions in parameter space correctly predicted by MonteCarlo and that the definition of modelling uncertainties provides a reasonable estimate of the uncertainty on this ratio

Background evaluation scheme for searches

Background estimate for irreducible backgrounds

- •Define a set of observables providing discrimination between signal and backgrounds
- •Three type of regions defined:

Signal Regions (SR) dominated by signal
Control Region (CR) in variable space near SR, with small expected signal contamination.

• Verify prediction in Validation Regions (VR) typically intermediate

observable 2

Typically define a CR for each major irreducible background

Master formula

Closeness to signal region

Eur. Phys. J. C 81 (2021) 860 An example: DM+tW analysis

Two lepton final state:

- •Two leptons from decays of 2 W
- •1b-tagged jet from top decay
- Etmiss from neutrinos and DM

Main backgrounds: ttbar+tW, ttZ, tWZ Two main discriminants m_{T2} , and m_{bl}^{t}

$$m_{\rm T2}(\vec{p}_{\rm T}^{\ell_1}, \vec{p}_{\rm T}^{\ell_2}, \vec{p}_{\rm T}^{\rm miss}) = \min_{\vec{q}_{\rm T}} \left[\max\left(m_{\rm T}^{\rm lep}(\vec{p}_{\rm T}^{\ell_1}, \vec{q}_{\rm T}), m_{\rm T}^{\rm lep}(\vec{p}_{\rm T}^{\ell_2}, \vec{p}_{\rm T}^{\rm miss} - \vec{q}_{\rm T}) \right) \right],$$

If leptons and all of p_{T}^{miss} from decay of two W: endpoint at m_{W}

If event has > 1 jet, build with two leptons all pairs of invariant mass combinations with two most b-like jets in events

 $m_{b\ell}^{t} = \min[\max(m_{\ell_1 j_1}, m_{\ell_2 j_2}), \max(m_{\ell_1 j_2}, m_{\ell_2 j_1})]$

If two lep and two jets from decays of two top quarks $m_{bl}^t < 150 \text{ GeV}_{28}$

How well do we model m^t_{bl}?

ATL-PHYS-PUB-2021-42

 $m_{_{bl}}^{\scriptscriptstyle t}$ extended version of $m_{_{bl}}^{^{\scriptscriptstyle minmax}}$

Sensitive to interference between tt and tW, and to prescriptions to avoid double counting of diagrams

Detailed studies in ATLAS to optimize modelling, and comparison to unfolded ATLAS result 30

A recent exercise: publish unfolded cross-sections in phase space relevant to searches

Take WW production, and present unfolded differential cross-section of relevant variables in SR defined by 2I ewkino searches

Errorr dominated by JER/JES uncertainty Significant contribution from modelling of ttbar background

Conclusions

- The LHC has been taking data since 2011, producing thousands of papers, discovering the Higgs and pushing the SM into the farthest retrenchments.
- None of these results possible without close collaboration of the theory community, which has produced tools which have been essential to the achievement of the LHC physics goals.
- The impetuous development of MC modelling tools in parallel with our work on the analysis of LHC data in the last 25 years is a unique achievement of two communities working together towards a common goal
- We are here to celebrate the achievements of Paolo, and he has been and still is a pivotal figure in this process, as well as a somebody from whom I personally have learnt immensely, both from the human and from the professional point of view. Thank you, Paolo!
- Many other key players in this game are sitting in this room today, and I would like to thank all of them for the very long and successful journey together, and for the progress to come with the next ~15 years of LHC datataking

Backup

D. Denegri, D. Froidevaux

LHC Theory workshop 09/02/98 7

Split of systematic errors for tWDM

Overview of CMS EXO results

Dark

Z

Heavy

Tools fror Higgs discovery paper (2012)

Process	Generator
ggF, VBF	POWHEG [<u>57</u> , <u>58</u>]+PYTHIA
$WH, ZH, t\bar{t}H$	PYTHIA
W+jets, Z/γ^* +jets	ALPGEN [59]+HERWIG
$t\overline{t}, tW, tb$	MC@NLO [<u>60</u>]+HERWIG
tqb	AcerMC [61]+PYTHIA
$q\bar{q} \rightarrow WW$	MC@NLO+HERWIG
$gg \rightarrow WW$	gg2WW [<u>62</u>]+HERWIG
$q\bar{q} \rightarrow ZZ$	POWHEG [<u>63</u>]+PYTHIA
$gg \rightarrow ZZ$	gg2ZZ [64]+HERWIG
WZ	MadGraph+PYTHIA, HERWIG
$W\gamma$ +jets	ALPGEN+HERWIG
$W\gamma^*$ [65]	MadGraph+PYTHIA
$q\bar{q}/gg \rightarrow \gamma\gamma$	SHERPA

Observation of $h \rightarrow tautau$ (2014)

Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sigma \times \mathcal{B}$ [pb]			
Signal $(m_H = 125 \text{ GeV})$	MC generator	$\sqrt{s} = 8$ TeV			
ggF, $H \to \tau \tau$	Powheg [42–45]	1.22	NNLO+NNLL	[48-53, 84]	
	+ Pythia8 [46]				
VBF, $H \to \tau \tau$	Powheg $+$ Pythia8	0.100	(N)NLO	[57-59, 84]	
$WH, H \to \tau \tau$	Pythia8	0.0445	NNLO	[62, 84]	
$ZH, H \to \tau \tau$	Pythia8	0.0262	NNLO	[62, 84]	
Declemented	MC generator	$\sigma \times \mathcal{B}$ []	pb]		
Background	MC generator	$\sqrt{s} = 8$	TeV		
$W(\rightarrow \ell \nu), \ (\ell = e, \mu, \tau)$	Alpgen [77]+Pythia8	36800	NNLO	[85, 86]	
$Z/\gamma^*(\to \ell\ell),$	Alpgen+Pythia8	3910	NNLO	[85, 86]	
$60 \text{ GeV} < m_{\ell\ell} < 2 \text{ TeV}$	ALPGEN+F YTHIAO	3910	MILO	[05, 00]	
$Z/\gamma^*(\to \ell\ell),$	Alpgen+Herwig [87]	13000	NNLO	[85, 86]	
$10 \text{ GeV} < m_{\ell\ell} < 60 \text{ GeV}$	ALFGEN THERWIG [07]	13000	MILLO	[05, 00]	
VBF $Z/\gamma^*(\to \ell\ell)$	Sherpa [88]	1.1	LO	[88]	
$t\overline{t}$	Powheg + Pythia8	253^{\dagger}	NNLO+NNLL	[89 - 94]	
Single top : Wt	Powheg + Pythia8	22^{\dagger}	NNLO	[95]	
Single top : s -channel	Powheg + Pythia8	5.6^{\dagger}	NNLO	[96]	
Single top : t -channel	AcerMC [80]+Pythia6 [73]	87.8^{\dagger}	NNLO	[97]	
$q\bar{q} \rightarrow WW$	Alpgen+Herwig	54^{\dagger}	NLO	[98]	
$gg \rightarrow WW$	GG2WW [79]+HERWIG	1.4^{\dagger}	NLO	[79]	
WZ, ZZ	HERWIG	30^{\dagger}	NLO	[98]	
$H \rightarrow WW$	same as for $H \to \tau \tau$ signal	4.7^{\dagger}			

VH observation (2018)

Process	ME generator	ME PDF	PS and Hadronisation	UE model tune	Cross-section order
Signal, mass set to 125	GeV and $b\bar{b}$ branching fraction to 5	8%			
$\begin{array}{c} qq \to WH \\ \to \ell \nu b\bar{b} \end{array}$	Роwнед-Box v2 [76] + GoSam [79] + MiNLO [80, 81]	NNPDF3.0NLO ^(*) [77]	Рутніа 8.212 [68]	AZNLO [78]	NNLO(QCD)+ NLO(EW) [82-88]
$\begin{array}{l} qq \to ZH \\ \to \nu\nu b\bar{b}/\ell\ell b\bar{b} \end{array}$	Powheg-Box v2 + GoSam + MiNLO	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NNLO(QCD) ^(†) + NLO(EW)
$gg \to ZH$ $\to vvb\bar{b}/\ell\ell b\bar{b}$	Powheg-Box v2	NNPDF3.0NLO ^(*)	Рутніа 8.212	AZNLO	NLO+ NLL [89–93]
Top quark, mass set to 1	172.5 GeV				
tī s-channel t-channel Wt	Powheg-Box v2 [94] Powheg-Box v2 [97] Powheg-Box v2 [97] Powheg-Box v2 [100]	NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO NNPDF3.0NLO	Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230 Рутніа 8.230	A14 [95] A14 A14 A14 A14	NNLO+NNLL [96] NLO [98] NLO [99] Approximate NNLO [101]
Vector boson + jets					
$ \begin{array}{l} W \to \ell \nu \\ Z/\gamma^* \to \ell \ell \\ Z \to \nu \nu \end{array} $	Sherpa 2.2.1 [71, 102, 103] Sherpa 2.2.1 Sherpa 2.2.1	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 [104, 105] Sherpa 2.2.1 Sherpa 2.2.1	Default Default Default	NNLO [106] NNLO NNLO
Diboson					
$\begin{array}{l} qq \rightarrow WW \\ qq \rightarrow WZ \\ qq \rightarrow ZZ \\ gg \rightarrow VV \end{array}$	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO NNPDF3.0NNLO	Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.1 Sherpa 2.2.2	Default Default Default Default	NLO NLO NLO NLO