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Case for next-to-leading order calculations

Help looking for / setting limits on SUSY el
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We prefer to know this bkg at NLO
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Case for next-to-leading order calculations

> Precision Higgs physics

° pp — ttH probes top Yukawa at tree level

o Has significant irreducible background from pp — ttbb

o We prefer to know this bkg at NLO

[ Bredenstein, Oenner, Dittmaier, Pozzorini PRL 103 (2009) ]
[ Bevilacqua, Czakon, Papadopoulos, Pittau, Worek JHEP 0909 (2009) ]
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Case for next-to-leading order calculations

> Recent years have seen amazing progress in NLO calculatns:

198
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Year

° Increasing complexity brings increasing powers of as(u)

° More emphasis on choosing 1 ’s carefully



Renormalization and factorization scales

o ‘Good scales” commonly considered to be so retrospectively on

seeing higher order corr"s and

> ‘Bad scales” commonly declared

res. scale sensitivity : typically o

residual scale sensitivity are small

on finding large higher order corr"s &

lagnosed as large unphysical scale logs



Q1: are large higher order corrns all down to large ur/F logs?

o Big higher order corrns can have real physical origins: new prodn

channels, big colour factors, large gluon flux, [.R. logs ...
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> Adjusting scale to make corrns / sensitivity small can effectively ‘eat’

unrelated physics in scale choice



Q2: what If there are many scales to choose from?

° In single/few scale processes it’s harder to make a bad scale choice
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Q2: what If there are many scales to choose from?

° |In procs with more jets, I.e. more scales, it’s hard to know what to do

I R/F ~ ETiE

W

LUR/E~ Mw ?




Q2: what If there are many scales to choose from?

o BSM background: W+3 jets (3 jets = 3 a5s's]

° BlackHat paper points out physical dist"s can go -ve for 4r = tr = Ew
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o For sufficiently poor choices [of scales] large logs can appear in some distributions,

invalidating even an NLO prediction BlackHat collaboration



Q3: if worrying about scale logs why not other large logs?
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° |s It reasonable to worry about single log terms beyond NLO & not also

worry about IR Sudakov double logs?



MINLO: Multi-scale improved Next-to-leading Order

Nason, Zanderighi, KH

o |n a nutshell:

o Determine the parton shower branching history associated with the

kinematic configns in the NLO events in the x-secn integrals.

o Take all-orders rad corrns that the shower would associate to such

configns, as in CKKW", and match them with the exact NLO corrns

o Addressing questions / objections of last few slides:

° Al: small/moderate NLO corrns/scale sensitivity isn’t a consideration

o AZ: PS have natural uniquely defined scale setting for multi-scale probs

o A3: PSresum large IR double logs as well as single scale logs

o (Catani, Krauss, Kuhn, Webber



Example: H+2 jets MINLO at leading order with a big brush

Ask how a parton
shower would have

generated this event:
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s Emissions strongly ordered in hardness factorise from one another

* |n PS each branching is like its own simple process with own scale

» Evaluating each as(u) associated to a branching vertex at

branching’s own pT sums large class of higher order corrns




Example: H+2 jets MINLO at leading order with a big brush
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¢ Relative to conventional fixed order the shower Is including

extra coupling constant ratios:  as(g2)

as(u)




Example: H+2 jets MINLO at leading order with a big brush
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¢ Relative to conventional fixed order the shower Is including

extra coupling constant ratios:  as(gz2) as(q1)
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Example: H+2 jets MINLO at leading order with a big brush
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¢ Relative to conventional fixed order the shower Is including

: : 2
extra coupling constant ratios:  as(gz2) as(q) a's(gm)

as(u) astn) gAim) =
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Example: H+2 jets MINLO at leading order with a big brush
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¢ Showers also account for the probability that the gluons exiting

gg—H vertex evolve from gm to g1 and g2 without emitting any

resolvable radn [(g>g2] : Sudakov form factors




Example: H+2 jets MINLO at leading order with a big brush
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* |n certain gauge(s) single logs in PS Sudakov factors can be
associated with ratios of self-energies [ratios of self-energies

in this cartoon)




Example: H+2 jets MINLO at leading order with a big brush
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* Since we Integrate over all activity occurring below g2 Sudakov

factors are also needed to account for any external legs

produced above g2 evolving down to g2




Example: H+2 jets MINLO at leading order with a big brush
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e Parton shower also effectively sets the factorisation scale for

such a configuration to the scale beneath which all activity is

|ntegrated Ol raE




Example: H+2 jets MINLO at leading order with a big brush
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Example: H+2 jets MINLO at leading order with a big brush
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Example: H+2 jets MINLO at leading order with a big brush
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Example: H+2 jets MINLO at next-to-leading order

o To extend from LO "MiLO" example to NLO apply the same all orders

shower corrns to the conventional NLO HJJ computation
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o And subtract a term to render the expansion in @ sunchanged to NLO -+



Application: H+1 jet MINLO at next-to-leading order
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o Resummation matched to NLO inclusive gg = H xsech [ = 1 in ratios ]

< HJ RUN: NLO H + ]jetvvith URrR= HF=PTH
o HJFXD: NLOH + 1 jet with ur= ug= My
o HIJ-MINLO = conventional NLO H + 1 jet at high pT

o HIJ-MINLO = resummation result at low pt

o HJ-MINLO = sensible scale unc. band [doesn’t shrink as pt — 0]




Application: Z+2 jet MINLO @ Pythia vs ATLAS
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Left: improves Z + 2 NLO s.t. gives even predict” for = 0 jet evts!

Right: NLO accuracy retained (& improved) for = 2 jet events

Equally nice improvement & agreement for ATLAS W+jets data

[ Campbell, Ellis, Nason, Zanderighi]
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MINLO” for H+1-jet

o MiNLO matches fully differential NLO to LL [NLL.) resummation

o MINLO finite in all ph.space: no need of gen. cuts
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{ Question: what’s MiINLO accuracy for inclusive quantities?




MINLO” for H+1-jet

° H+1-jet spectrum known analytically to high accuracy

o Allows to determine Sudakov s.t. H+1-jet 1s NLO for H+0-jet

MiNLO — MiNLO”

A(Q,pr) = A (Q,pr) = A(Q,pr) A (Q, pr)
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o MINLO’ simultaneously NLO for H & H+1-jet prodr




MINLO” for H+1-jet

° Higgs rapidity

> Conventional NLO H prodr: red

o MINLO” H+1-jet+parton shower: green

o Agree with each other ~ to within the line thickness



Summary

o Conventional scale setting in complex processes subject to large

ambiguities, and lacking physical justifications

o MINLO is a physically well motivated scale setting for processes with

Jjets: identifies all important scales, treats all coherently

o MINLO taken up by independent groups: applied in complex

orocesses, used in new NLO merging schemes (e.g. FxFx]

o

MINLO” = NLO x NLO calcns w.o. merging scales

o MINLO’ extended to (N)NLO x NLO x NLO accuracy in H+2 jets



Messages

OXFORD

The Black Book of
Quantum Chromodynamics
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Thank you Paolo




