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Starting point: muon g − 2

7

Run ωa/2π [Hz] ω̃′p/2π [Hz] R′µ × 1000
1a 229081.06(28) 61791871.2(7.1) 3.7073009(45)
1b 229081.40(24) 61791937.8(7.9) 3.7073024(38)
1c 229081.26(19) 61791845.4(7.7) 3.7073057(31)
1d 229081.23(16) 61792003.4(6.6) 3.7072957(26)
Run-1 3.7073003(17)

TABLE I. Run-1 group measurements of ωa, ω̃′p, and their
ratios R′µ multiplied by 1000. See also Supplemental Mate-
rial [66].

COMPUTING aµ AND CONCLUSIONS

Table I lists the individual measurements of ωa and
ω̃′p, inclusive of all correction terms in Eq. 4, for the four
run groups, as well as their ratios, R′µ (the latter multi-
plied by 1000). The measurements are largely uncorre-
lated because the run-group uncertainties are dominated
by the statistical uncertainty on ωa. However, most sys-
tematic uncertainties for both ωa and ω̃′p measurements,
and hence for the ratios R′µ, are fully correlated across
run groups. The net computed uncertainties (and cor-
rections) are listed in Table II. The fit of the four run-
group results has a χ2/n.d.f. = 6.8/3, corresponding to
P (χ2) = 7.8%; we consider the P (χ2) to be a plausible
statistical outcome and not indicative of incorrectly esti-
mated uncertainties. The weighted-average value is R′µ
= 0.0037073003(16)(6), where the first error is statistical
and the second is systematic [67]. From Eq. 2, we arrive
at a determination of the muon anomaly

aµ(FNAL) = 116 592 040(54)× 10−11 (0.46 ppm),

where the statistical, systematic, and fundamental con-
stant uncertainties that are listed in Table II are com-
bined in quadrature. Our result differs from the SM value
by 3.3σ and agrees with the BNL E821 result. The com-
bined experimental (Exp) average[68] is

aµ(Exp) = 116 592 061(41)× 10−11 (0.35 ppm).

The difference, aµ(Exp)− aµ(SM) = (251± 59)× 10−11,
has a significance of 4.2σ. These results are displayed in
Fig. 4.

In summary, the findings here confirm the BNL exper-
imental result and the corresponding experimental aver-
age increases the significance of the discrepancy between
the measured and SM predicted aµ to 4.2σ. This result
will further motivate the development of SM extensions,
including those having new couplings to leptons.

Following the Run-1 measurements, improvements to
the temperature in the experimental hall have led to
greater magnetic field and detector gain stability. An
upgrade to the kicker enables the incoming beam to be
stored in the center of the storage aperture, thus reducing
various beam dynamics effects. These changes, amongst
others, will lead to higher precision in future publications.

Quantity Correction terms Uncertainty
(ppb) (ppb)

ωma (statistical) – 434
ωma (systematic) – 56
Ce 489 53
Cp 180 13
Cml -11 5
Cpa -158 75
fcalib〈ω′p(x, y, φ)×M(x, y, φ)〉 – 56
Bk -27 37
Bq -17 92

µ′p(34.7◦)/µe – 10
mµ/me – 22
ge/2 – 0
Total systematic – 157
Total fundamental factors – 25
Totals 544 462

TABLE II. Values and uncertainties of the R′µ correction
terms in Eq. 4, and uncertainties due to the constants in Eq. 2
for aµ. Positive Ci increase aµ and positive Bi decrease aµ.
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FIG. 4. From top to bottom: experimental values of aµ
from BNL E821, this measurement, and the combined aver-
age. The inner tick marks indicate the statistical contribution
to the total uncertainties. The Muon g − 2 Theory Initiative
recommended value [13] for the standard model is also shown.
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B. Abi et al., Phys. Rev. Lett. 126 (2021) 14, 141801 [arXiv:2104.03281[hep-ex]]
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Components of the theoretical prediction

aQED
µ × 1011 = 116584718.931(104)

aEW
µ × 1011 = 153.6(1.0)

aHLbL
µ × 1011 = 92(18)

aHVP
µ × 1011 = 6845(40)

aSMµ × 1011 = 116591810(43)

T. Aoyama et al. Phys.Rept. 887 (2020) 1-166
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Standard approaches to aHLO
µ

• dispersion relations, optical theorem and e+e− → hadrons data

aHLO
µ =

1

4π3
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• or first principles calculations with LQCD
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An additional puzzle

T. Aoyama et al. Phys.Rept. 887 (2020) 1-166

B. Abi et al. [Muon g-2], Phys. Rev. Lett. 126 (2021) no.14, 141801.

Borsanyi, S. et al. Nature 593, 51–55 (2021).
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A recent summary
Prospects for precise predictions of aµ in the SM
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Figure 1: Left: Comparison of HLbL evaluations, as quoted in Ref. [6], to earlier esti-
mates [42, 141–143] (orange) and a more recent lattice calculation [144] (open blue).
Right: Comparison of theoretical predictions of aµ with experiment [1, 5] (orange band),
adapted from Ref. [6]. Each data point represents a different evaluation of leading-order
HVP, to which the remaining SM contributions, as given in Ref. [6], have been added.
Red squares show data-driven results [21, 22, 42, 145]; filled blue circles indicate lattice-
QCD calculations that were taken into account in the WP20 lattice average [25–30, 32],
while the open ones show results published after the deadline for inclusion in that aver-
age [135, 146]; the purple triangle gives a hybrid of the two [26]. The SM prediction of
Ref. [6] is shown as the black square and gray band.

2 Data-driven evaluations of HVP

The data-driven evaluation of HVP relies on the master formula from Refs. [147, 148],
a dispersion relation that relates the leading-order HVP contribution aHVP, LO

µ to the to-
tal cross section for e+e− → hadrons.1 The main challenges in converting the available
data [52–104] to the corresponding HVP integral include the combination of data sets in
the presence of tensions in the data base and the propagation and assessment of the re-
sulting uncertainties. For illustration, the contributions of the main exclusive channels and
the inclusive region from the compilations of Refs. [21, 22] are shown in Table 2.

In Ref. [6] a conservative merging procedure was defined to obtain a realistic assess-
ment of these underlying uncertainties. The procedure accounts for tensions among the
data sets, for differences in methodologies in the combination of experimental inputs, for
correlations between systematic errors, and includes constraints from unitarity and analyt-
icity [19–21, 149]. Further, the next-to-leading-order calculation from Ref. [150] suggests
that radiative corrections are under control at this level.

1The cross section is defined photon-inclusively, see Ref. [6], i.e., while aHVP, LO
µ is O(α2), it contains, by

definition, one-photon-irreducible contributions of order O(α3). This convention matches the one used in
lattice-QCD calculations.

4

G. Colangelo et al. arXiv:2203.1581 (Snowmass 2021)

recent new developments e.g.

• Lattice 2022 (8-13 August 2022)

• Fifth Plenary Workshop of the Muon g-2 Theory Initiative (5-9 September 2022)
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A third independent determination more than welcome

? G. Abbiendi, C.M. Carloni Calame, U. Marconi, C. Matteuzzi, G. Montagna, O. Nicrosini, M. Passera, F. Piccinini,
R. Tenchini, L. Trentadue, G. Venanzoni,
Measuring the leading hadronic contribution to the muon g-2 via µe scattering
Eur. Phys. J. C 77 (2017) no.3, 139 - arXiv:1609.08987 [hep-ph]

? C. M. Carloni Calame, M. Passera, L. Trentadue and G. Venanzoni,
A new approach to evaluate the leading hadronic corrections to the muon g-2

Phys. Lett. B 746 (2015) 325 - arXiv:1504.02228 [hep-ph]
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Master formula

• Alternatively (exchanging s and x integrations in aHLO
µ )

aHLO
µ =

α

π

∫ 1

0

dx (1− x) ∆αhad[t(x)]

t(x) =
x2m2

µ

x− 1
< 0

e.g. Lautrup, Peterman, De Rafael, Phys. Rept. 3 (1972) 193

Hadronst

   The hadronic VP correction to the running of α enters

   Essentially the same formula used in lattice QCD calculation of aHLO
µ

? ∆αhad(t) (and aHLO
µ ) can be directly measured in a (single) experiment involving

a space-like scattering process
Carloni Calame, Passera, Trentadue, Venanzoni PLB 746 (2015) 325

? Still a data-driven evaluation of aHLO
µ , but with space-like data

• By modifying the kernel function α
π (1 − x), also aHNLO

µ and aHNNLO
µ can be provided

Balzani, Laporta, Passera, arXiv:2112.05704 [hep-ph]
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From time-like to space-like evaluation of aHLO
µ

Time-like 7→ Space-like
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7→ Time-like: combination of many experimental data sets, control of RCs better than O(1%) on hadronic

channels required

7→ Space-like: in principle, one single experiment, it’s a one-loop effect, very high accuracy needed
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MUonE: µe→ µe @CERN

Abbiendi et al., EPJC 77 (2017) 3, 139

Abbiendi et al., Letter of Intent: the MUonE project, CERN-SPSC-2019-026, SPSC-I-252 (2019)

   Scattering µ’s on e’s in a low Z target looks like an ideal process (fixed target experiment)

   It is a pure t-channel process at tree level

   The M2 muon beam (Eµ ' 160 GeV) is available at CERN

   
√
s ' 0.4 GeV and −0.143 < t < 0 GeV2

   We can cover 87% of the aHLO
µ space-like integral (and extrapolate to x→ 1)

   With ∼ 3 years of data taking, a statistical accuracy of 0.3% on aHLO
µ can be achieved

1

2

δσ

σ
' δα

α
' δ∆αhad

∆αhad is a 0.1% effect in this region→ to measure it at 1%, σ must be controlled at the 10−5 level
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statistics and (main) systematic uncertainties

• statistics: CERN muon beam M2 (E = 150 GeV), 1.3 · 107 µ/s with a target (Be/C) with total thickness of

60 cm =⇒ L ∼ 1.5 · 107nb−1 =⇒ statistical sensitivity ∼ 0.3% on aHLOµ (∼ 20 · 10−11) in about 3 yrs of

data taking

Sistematics
• (main) experimental sources

• multiple scattering: Ee in normalization region much lower than in signal region
Effect ∼ 1/E =⇒ it affects signal and normalization in different way

• absolute µ beam energy scale, 5 MeV =⇒ 10−5 effect
• angular intrinsec resolution (∼ 1%)

• longitudinal alignment (∼ 10µm)

• theoretical: higher order radiative corrections modify the shapes
• order of magnitude estimate, barring infrared logs and setting ci,j ∼ 10

• c1,1
(
α
π

)
L ∼ 0.2 c1,0

(
α
π

)
∼ 2.5 · 10−2

• c2,2
(
α
π

)2
L2 ∼ 5 · 10−3 c2,1

(
α
π

)2
L ∼ 5 · 10−4 c2,0

(
α
π

)2 ∼ 5 · 10−5

• c3,3
(
α
π

)3
L3 ∼ 1.5 · 10−4 c3,1

(
α
π

)3
L2 ∼ 1.5 · 10−5 c3,0

(
α
π

)3
L ∼ 1.5 · 10−6

• the most advanced technologies for NNLO calculations and higher order resummation and matching are needed
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On the experimental side

• a modular apparatus has been proposed (40 independent tracking stations)

G. Abbiendi et al., LoI CERN-SPSC-2019-026, SPSC-I-252, CERN

  

Detector layout
● Boosted kinematics: θe <32mrad (for Ee>1 GeV), θμ<5mrad

The whole acceptance can be covered with a 10x10cm2 silicon sensor 
at 1m distance from the target, reducing many systematic errors

● Minimal distortions of the outgoing e/μ trajectories within the target material 
and small rate of radiative events

● Modular structure of ~40 independent and precise tracking stations, with split 
thin light targets equivalent to 60cm Be

● ECAL and Muon filter after the last station, for PID and background rejection.

Letter of Intent SPSC-I-252

11

• whole acceptance covered with a 10×10 cm2 silicon sensor
• thin targets equivalent to 60 cm
• ECal and Muon filter after last station, for PID and background rejection
• two Beam Tests already done at CERN (2017 and 2018)

1 Multiple Scattering measurements
G. Abbiendi et al., arXiv:1905.11677

2 selection of a clean sample of elastic events
G. Abbiendi et al., arXiv:2021.11111

• Further Beam Test in October 2022
• 3 weeks Test Run in 2023 (proof of concept of the experimental proposal)
• 10 stations before LHC LS3 (2026) with first measurements of aHVP

µ with ∼ 1% accuracy
Nason’s fest Precision at low energy: MUonE 12 / 23



First step towards precision: QED NLO

p1 p3

p2 p4

µ− µ−

e− e−

t = t24 = t13

• analytical expression for tree level

dσ

dt
=

4πα2

λ(s,m2
µ,m2

e)

[
(s−m2

µ −m2
e)

2

t2
+
s

t
+

1

2

]
• VP gauge invariant subset of NLO rad. corr.

• factorized over tree-level: α→ α(t)
• NLO virtual diagrams (Van Nieuwenhuizen 1971, D’Ambrosio 1983, Kukhto et al. 1987, Bardin, Kalinovskaya 1997)

p2 p4

e− e−

p1 p3

µ− µ−

leptons

p2 p4

e− e−

p1 p3

µ− µ−

hadrons
+top

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

p1 p3

p2 p4

µ− µ−

e− e−

• and corresponding real emission diagrams
• NLO matrix elements calculated with finite mµ and me mass effects and a Monte Carlo program,

MESMER, has been taylored to the fixed target kinematics
Alacevich, Carloni Calame, Chiesa, Montagna, Nicrosini, Piccinini, arXiv:1811.06743; JHEP 02 (2019) 155
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Weak interaction effects (LO and NLO)
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Alacevich, Carloni Calame, Chiesa, Montagna, Nicrosini, Piccinini, arXiv:1811.06743

• tree-level Z-exchange important at the 10−5 level

• purely weak RCs (in QED NLO units) at a few 10−6 level
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Second step, photonic radiative corrections at NNLO Carloni Calame et al., JHEP 11 (2020) 028

calculated exactly• | NLO virtual diagrams |2

• interference of LO µe→ µeγ amplitude with

+ many others

• interference of LO µe→ µe amplitude with

+ many others

2-loop QED vertex form factors borrowed from Mastrolia and Remiddi, NPB 664 (2003) 341
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

approximated à la YFS• interference of LO µe→ µe amplitude with

+ many others

   NNLO double-virtual amplitudes where at least 2 photons connect the e and µ lines are approximated

according to the Yennie-Frautschi-Suura (’61) formalism to catch the infra-red divergent structure

Ãα2

= Aα2

e +Aα2

µ +Aα2

eµ, 1L×1L︸ ︷︷ ︸
exact

+
1

2
Y 2
eµT + Yeµ (Ye + Yµ) T + (Ye + Yµ)Aα1,R

eµ + YeµAα
1,R

︸ ︷︷ ︸
YFS approximated

• going beyond this requires the full two-loop virtual amplitudes
R. Bonciani et al., PRL 128 (2022) 2
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Second step, photonic radiative corrections at NNLO JHEP 11 (2020) 028

calculated exactly• squared absolute value of

+ many others

   also at NNLO we use a vanishingly small photon mass λ and the “slicing method” to deal with IR

divergences

   phase space integration and event generation is again performed with MC techniques allowing for fully

exclusive event generation

   we estimate the subset of amplitudes in YFS approximation to miss terms of order(α
π

)2
ln2 (m2

µ/m
2
e

)
' 5× 10−4

   detailed comparisons ongoing with the independent Monte Carlo code McMule (PSI)
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NNLO Virtual leptonic pairs (vacuum polarization insertions) E. Budassi et al., JHEP 11 (2021) 098

• any lepton (and hadron) in the VP blobs
• interfered with µe→ µe or µe→ µeγ amplitudes

(a) (b) (a)

+ · · ·

(c)

+ · · ·

• interfered with µe→ µe amplitude

(a)
(b)

+ · · ·

Here the 2-loop integral is evaluated with dispersion relation techniques
used in the past for Bhabha: Carloni Calame et al., JHEP 07 (2011) 126, and for hadr. corr. in MUonE: Fael & Passera, PRL 122 (2019) 19

gµν
q2 + iε

→ gµν
α

3π

∫ ∞
4m2

`

dz

z

R`(z)

q2 − z + iε
= gµν

α

3π

∫ ∞
4m2

`

dz

z

1

q2 − z + iε

(
1 +

4m2
`

2z

)√
1− 4m2

`

z
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Real pair emissions E. Budassi et al., JHEP 11 (2021) 098

• they also contribute at NNLO

• squared absolute vaule of

(b) (c) (e) (f)

+ · · ·

• the emission of an extra electron pair µe→ µe e+e− is potentially a dramatically large (reducible)

background, because of the presence of “peripheral” diagrams

   A set of experimental cuts is needed to get rid of it.
In addition to basic cuts (exactly one muon-like and one electron-like, with E ≥ 1 GeV, particle in the
detector), we consider

1. θµ-like, θe-like ≥ θc = 0.2 mrad

2. acoplanarity ≤ 3.5 mrad

3. geometric distance from the elastic curve in the [θµ, θe] plane < 0.2 mrad
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Real e+e− pairs E. Budassi et al., JHEP 11 (2021) 098

   only 0.007% of µe→ µe e+e− events survives the combination of the three cuts
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p2

p1

p4

p3

p5• π0 production

• The process µe→ µeπ0 with π0 → γγ as possible background, using a phenomenological model for the γ?γ?π0

effective vertex
   not an issue in the signal region

E. Budassi et al., PLB 829 (2022) 137138

   perhaps to be considered for NP searches in phase space region outside the signal one

• robustness of the measurement against possible New Physics “contamination” has been studied
A. Masiero, P. Paradisi and M. Passera, arXiv:2002.05418

P.S.B. Dev, W. Rodejohann, X.-J. Xu and Y. Zhang, arXiv:2002.04822

• interesting proposals for New Physics searches at MUonE (new light mediators)
• invisibly decaying light Z′ in µe→ µeZ′

Asai et al., arXiv:2109.10093

• long-lived mediators with displaced vertex signatures

Galon et al., arXiv:2202.08843

• through scattering off the target nuclei µN → µNX

Grilli di Cortona and E. Nardi, arXiv:2204.04227
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Summary

   Carloni Calame et al., PLB 746 (2015), 325

   Mastrolia et al., JHEP 11 (2017) 198

   Di Vita et al., JHEP 09 (2018) 016

   Alacevich et al., JHEP 02 (2019) 155

   Fael and Passera, PRL 122 (2019) 19, 192001

   Fael, JHEP 02 (2019) 027

   Carloni Calame et al., JHEP 11 (2020) 028

   Banerjee et al., SciPost Phys. 9 (2020), 027

   Banerjee et al., EPJC 80 (2020) 6, 591

   Budassi et al., JHEP 11 (2021) 098

   Balzani et al., arXiv:2112.05704 [hep-ph]

   Bonciani et al., PRL 128 (2022) 2, 022002

   Budassi et al., PLB 829 (2022) 137138

7→ A lively theory community is active to provide

state-of-the-art calculations to match the required

accuracy for meaningful data analysis

7→ Independent numerical codes (Monte Carlo
generators and/or integrators) are developed and
cross-checked to validate high-precision
calculations. Chiefly

3 Mesmer in Pavia
github.com/cm-cc/mesmer

3 McMule at PSI/IPPP
gitlab.com/mule-tools/mcmule

7→ An international MUonE collaboration is growing
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Thank you Paolo for your continuous support
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SPARES
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Virtual leptonic (and hadronic NNLO) vertex corrections
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Virtual leptonic (and hadronic) NNLO VP corrections
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NNLO results JHEP 11 (2020) 028

• Showing
∆i

NNLO ≡ 100× dσiNNLO − dσiNLO

dσLO

   exact NNLO radiation from electron or muon leg, with or without acoplanarity cut
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(approximated) photonic NNLO results JHEP 11 (2020) 028

   full NNLO1 radiation for incoming µ+ or µ−, with or without acoplanarity cut
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1of course with “double boxes” in YFS approximation
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Virtual pair effects E. Budassi et al., JHEP 11 (2021) 098

• Showing NNLO differential K-factors ×104

KNNLO ≡
dσα

2, virtual pairs
i

dσLO

−50

0

50

100

150

200

250

0 5 10 15 20 25 30

without acoplanarity cut

1
0
4
×
K

N
N

L
O

θe (mrad)

e blob (e radiation)
e+ µ blob (e radiation)

e+ µ+ had blob (e radiation)
e blob (full radiation µ−)

e+ µ blob (full radiation µ−)
e+ µ+ had blob (full radiation µ−)

e blob (full radiation µ+)
e+ µ blob (full radiation µ+)

e+ µ+ had blob (full radiation µ+)

−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

0 5 10 15 20 25 30

with acoplanarity cut (3.5 mrad)

1
0
4
×
K

N
N

L
O

θe (mrad)

e blob (e radiation)
e+ µ blob (e radiation)

e+ µ+ had blob (e radiation)
e blob (full radiation µ−)

e+ µ blob (full radiation µ−)
e+ µ+ had blob (full radiation µ−)

e blob (full radiation µ+)
e+ µ blob (full radiation µ+)

e+ µ+ had blob (full radiation µ+)

Nason’s fest Precision at low energy: MUonE 6 / 9



Virtual pair effects JHEP 11 (2021) 098
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Real e+e− pairs (only basic cuts) JHEP 11 (2021) 098
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Real e+e− pairs (applying extra cuts) JHEP 11 (2021) 098
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   µe→ µe µ+µ− is always tiny, because of tiny available phase space
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