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Detection of gravitational waves
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3DCC-G2102319; LVK, arXiv:2111.03606 (2021)

O4 started in May 2023!
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Probes of dark matter with GW detectors
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Figure from Bertone et al., SciPost Phys. Core 3, 007 (2020)

Also see Snowmass review: Baryakhtar et al., arXiv:2203.07984 (2022)



Probes of dark matter with GW detectors
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• GW detectors are extremely sensitive to displacements —— 
can also be used as direct dark matter detectors through the 
field’s weak coupling to normal matter.

Caltech/MIT/LIGO Lab

• Primordial black holes are also dark matter candidates. Sub-
solar-mass black hole inspirals are continuous GW sources.

ESA/Hubble, N. Bartmann

• If neutron stars were to contain dark matter, there would be 
imprints in the star’s tidal deformability, which may be 
accessible to GW observation. 

Goddard Space Flight Center/NASA

• Astrophysical probes of ultralight boson condensates around 
black holes become possible via GW observation, by only 
assuming a coupling through gravity.

Superradiance: Brito, Cardoso, Pani



• Alternative beyond Standard Model theoretical frameworks predict the existence of 
new ultralight boson particles, including scalar (spin 0), vector (spin 1), and tensor 
(spin 2) fields.

• QCD axion (well motivated to solve the strong-CP problem), string axion, dark 
photon, etc. —— They are also dark matter candidates.

• Their model-dependent weak couplings to the Standard Model (if at all) and the 
vanishingly small mass make them extremely difficult to detect by conventional 
lab experiments.

• The Standard Model of particle physics has been tremendously successful but still 
incomplete, e.g., it is irreconcilable with General Relativity and does not contain any 
viable dark matter particle.
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Ultralight bosons



• Now we can appeal to the new experimental field and use GW detectors to search for 
them, taking advantage of their universal character of gravitational couplings.

• Even without detection, limits on gravitational-wave strain can be translated into 
interesting constraints on boson properties.
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Bosons, black holes, GWs

• The ultralight boson field around a rapidly rotating BH 
can grow exponentially due to a phenomenon called 
“superradiance.” A macroscopic cloud can form around 
the BH and generate gravitational waves that could be 
detected by GW detectors.

Brito, Cardoso, Pani (2015)



Penrose process

Image credit: Isi

Superradiance Condition:

Bosonic waves
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Black hole superradiance

Superradiance:

Amplified scattering 

of waves



BH bomb (Press and Teukolsky)

Image credit: Isi

Arvanitaki & Dubovsky, 2011

Ultralight bosons 
form a natural 

“mirror”

Superradiance + Confinement = Instability

• Confinement condition： 

     Compton wavelength ~ BH characteristic length 

mb ⇠ 10�20 � 10�9 eV
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• With astrophysical BHs, we 
can probe boson mass (rest 
energy) range: µ ⌘ mbc
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Superradiant instability



• Annihilation — two bosons annihilate into a graviton (cf. 
an electron and a positron annihilate into a photon)

Need more than one level occupied with considerable numbers

Too weak for young BHs (scalar); short observational window; frequency not preferred

Too short (burst-like)

Promising continuous/long-lasting sources

More interested in fastest growing level 

Scalar field: j = l = m =1, s = n = 0

Vector field: j = s = m =1, l = n = 0 

j — total angular momentum; l — orbital azimuthal; m — (magnetic) azimuthal

s — spin angular momentum; n — radial; n+l+1 — principal 11

Mechanisms of gravitational radiation

• Level transition — boson transitions between energy 
levels (cf. electrons jump in the hydrogen atom)

• “Bosenova” — (in some cases) abrupt collapse of the 
cloud due to particle self-interactions



Number of bosons occupying a level >1077

Cloud mass may reach ~10% of the BH mass

Keep growing until is no longer satisfied

Cloud dissipated

BH spun down


(on a very long timescale)

Quantum fluctuation

Scalar cloud ( l = m = 1 )

“resonate”

!GW = 2!n̄
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Continuous quasi-
monochromatic signals 

(small positive     )ḟ
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Superradiance, boson clouds, GWs



A given BH could “resonate” with bosons in a narrow mass range, and hence 
emit GWs at frequencies in a limited band on a predictable timescale

• GW emission frequency is determined by the particle’s energy (mass) !GW = 2!n̄
<latexit sha1_base64="a98kyiXeKI2rN5fGZeMBOcPECAk=">AAACDXicbVDLSsNAFJ34rPUVdelmsAquSlIF3QhFF7qsYB/QhDCZTtqhM5MwMxFKyA+48VfcuFDErXt3/o3TNoi2HrhwOOde7r0nTBhV2nG+rIXFpeWV1dJaeX1jc2vb3tltqTiVmDRxzGLZCZEijArS1FQz0kkkQTxkpB0Or8Z++55IRWNxp0cJ8TnqCxpRjLSRAvvQiznpoyDzJIfX7RxewBr80UIkM5HngV1xqs4EcJ64BamAAo3A/vR6MU45ERozpFTXdRLtZ0hqihnJy16qSILwEPVJ11CBOFF+Nvkmh0dG6cEolqaEhhP190SGuFIjHppOjvRAzXpj8T+vm+ro3M+oSFJNBJ4uilIGdQzH0cAelQRrNjIEYUnNrRAPkERYmwDLJgR39uV50qpV3ZNq7fa0Ur8s4iiBfXAAjoELzkAd3IAGaAIMHsATeAGv1qP1bL1Z79PWBauY2QN/YH18A6Sym04=</latexit>

Ground-based detector Space-based detector

Brito+ (2017)
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Parameter space

• Can estimate the emission frequency for a given BH!

Fine structure constant

• Emission timescale
<latexit sha1_base64="eT13fIDiei9QAw7Lk47ZetFPJ3k=">AAACAHicbZC7TsMwFIadcivlFmBgYLGokMpSJYjbWMEAY5HoRWpC5LhOa9VOItupVEVZeBUWBhBi5THYeBucNgO0/JKlT/85R8fn92NGpbKsb6O0tLyyulZer2xsbm3vmLt7bRklApMWjlgkuj6ShNGQtBRVjHRjQRD3Gen4o5u83hkTIWkUPqhJTFyOBiENKEZKW5554CiUeKkjOLztZI9pLafxSeaZVatuTQUXwS6gCgo1PfPL6Uc44SRUmCEpe7YVKzdFQlHMSFZxEklihEdoQHoaQ8SJdNPpARk81k4fBpHQL1Rw6v6eSBGXcsJ93cmRGsr5Wm7+V+slKrhyUxrGiSIhni0KEgZVBPM0YJ8KghWbaEBYUP1XiIdIIKx0ZhUdgj1/8iK0T+v2Rf38/qzauC7iKINDcARqwAaXoAHuQBO0AAYZeAav4M14Ml6Md+Nj1loyipl98EfG5w8Bq5YJ</latexit>

⌧ (v)GWScalar Vector
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Population and stochastic background studies

• Constraints obtained from black hole spin measurements

e.g. [Arvanitaki et al. 2017, Brito et al. 2017, Baryakhtar et al. 2017, Cardoso et al. 2018, Ng et al., PRD 2021, Ng et al. PRL 2021]

• Constraints from searches for stochastic GW background 

e.g. [Tsukada et al. 2019, Tsukada et al. 2021]

There are systematics and uncertainties associated with spin 
measurements and assumptions are made for BH populations
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Searches for individual galactic sources (examples)

Unknown black holes or black holes with unknown history 
are not ideal in order to obtain robust constraints

• An all-sky search for scalar clouds around unknown BHs in O3

[Abbott+ PRD 105, 102001 (2022)]

‣ Semiquantitative constraints on the possible presence of emitting boson clouds 
in our Galaxy


‣ E.g., systems younger than  yrs are disfavored in the whole Galaxy for 
boson masses  for a maximum BH mass of  and 

 for a maximum BH mass of  (using Kroupa mass 
distribution with PDF )

∼ 103

∼ [2.5, 10] × 10−13 eV 50M⊙
∼ [1.2, 10] × 10−13 eV 100M⊙

∝ m−2.3 Credit: NASA

• A dedicated search for scalars targeting Cygnus X-1 in O2 

    [Sun+ PRD 101, 063020 (2020)]

‣ E.g., boson masses  are disfavored assuming a BH age 
of  yrs and  assuming a BH age of  yrs

[6.4, 8.0] × 10−13 eV
5 × 106 [6.3, 13.2] × 10−13 eV 105

Credit: NASA



Witnessed birth 

Constrained position 

Measured BH mass/spin

When

Where

What parameter space

How far can we reachMeasured luminosity 
distance, inclination, etc.

Search methods are available, e.g., Sun+ 2018, 
D’Antonio+ 2018, Isi+ 2019, Jones+ 2023

16

Ideal targets —- remnant BHs formed in CBCs
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Isi, Sun, Brito, Melatos (2019)

[GW150914] can reach ~10 Mpc

1 detector, 1-year observation
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Horizon distance (scalar)
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[GW150914] can reach ~160 Mpc

Promising with future detectorsBeyond the reach of ALIGO



• Vector clouds have much stronger radiation power


• But meantime the signal is much shorter


• Do we have a better chance detecting vector signals?

Prospect for vectors
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Horizon distance (vector)

• Vector boson clouds around CBC remnants can potentially be reached by current-generation detectors


• Plots are showing an optimally matching scenario —— max GW strain when the cloud is saturated


• Can probe a small range of boson masses for each given BH target


• Can reach further in some non-optimally matching cases —— signals are slightly weaker but last longer

Jones, Sun, Siemonsen, East, Scott, Wette, 
arXiv:2305.00401 (2023)2 aLIGO, 1 CE, 1ET, observation duration depends on emission timescale τGW



• GW detectors provide a new way to probe the dark sector in the universe, including 
yet-undiscovered ultralight bosons. Various studies have already been carried out.

• Newly born BHs formed in mergers are ideal target sources for directed searches. 
Observations for scalars will become promising with future detectors. Vectors are 
potentially at the reach of current-generation detectors; searches are being planned.

• Future studies may combine theoretical predictions, gravitational-wave search results, 
and constraints from other types of studies.
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Summary



Thanks!

Questions?



• BUT — it’s different from a hydrogen atom

- System is non-Hermitian (ingoing boundary condition at horizon)

- Bosons rather than fermions

• Solving the Schrodinger equation over a Kerr background, one gets:

Fine structure constant

• Occupation number of a given quantum state grows exponentially!!

• One energy level dominates at a given time.

Principal quantum number 

Hydrogen atom!
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The gravitational “atom”



BHs in galactic X-ray binaries


e.g., [Sun+ PRD 101, 063020 (2020)]

• Well-localized

• Unknown age and history

• Systematics affecting the spin measurements 

• Not well understood impact from the active environment

• Relatively low BH mass

• Search challenges due to the binary motion

Isolated galactic BHs


e.g., [Abbott+ PRD 105, 102001 (2022)]

• Clean environment, no impact from binary motion

• Unknown location (need an all-sky blind search)

• Contingent on BH populations

• Unknown age, spin, etc.
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Searches for individual galactic sources


