





# STANDARD MODEL PREDICTION UNCERTAINTIES

The 31st International Symposium on Lepton Photon Interactions at High Energies





Xuan Chen Melbourne, Australia 17 July, 2023





➤ SM has a wide range of theoretical uncertainties

```
a_{\mu} = 116591810(43) \times 10^{-11}
Phys. Reports 887 (2020) 1-116
a_{e} = 1159652180.252(95) \times 10^{-12}
Nature (London) 588, 61 (2020)
\alpha^{-1} = 137.035999166(15)
Phys. Rev. Lett. 130, 071801 (2023)
```

0.1/billion ~ 10/cent
Uncertainties



F. Dulat, A. Lazopoulos, B. Mistlberger 2018

➤ SM has a wide range of theoretical uncertainties

```
a_{\mu} = 116591810(43) \times 10^{-11}
Phys. Reports 887 (2020) 1-116
a_{e} = 1159652180.252(95) \times 10^{-12}
Nature (London) 588, 61 (2020)
\alpha^{-1} = 137.035999166(15)
Phys. Rev. Lett. 130, 071801 (2023)
```

0.1/billion ~ 10/cent
Uncertainties



F. Dulat, A. Lazopoulos, B. Mistlberger 2018

- ➤ Motivations of scrutinisation:
  - ➤ To exercise our understanding of the Standard Model
  - ➤ To establish new sector of the Standard Model (Higgs)
  - ➤ To maximise sensitivity to new physics in measurements



➤ SM has a wide range of theoretical uncertainties

$$a_{\mu} = 116591810(43) \times 10^{-11}$$

$$Phys. Reports 887 (2020) 1-116$$

$$a_{e} = 1159652180.252(95) \times 10^{-12}$$

$$Nature (London) 588, 61 (2020)$$

$$\alpha^{-1} = 137.035999166(15)$$

$$Phys. Rev. Lett. 130, 071801 (2023)$$

0.1/billion ~ 10/cent
Uncertainties

➤ Direct discovery for new channels and new resonants





F. Dulat, A. Lazopoulos, B. Mistlberger 2018



➤ SM has a wide range of theoretical uncertainties

$$a_{\mu} = 116591810(43) \times 10^{-11}$$
 $Phys. Reports 887 (2020) 1-116$ 
 $a_{e} = 1159652180.252(95) \times 10^{-12}$ 
 $Nature (London) 588, 61 (2020)$ 
 $\alpha^{-1} = 137.035999166(15)$ 
 $Phys. Rev. Lett. 130, 071801 (2023)$ 

0.1/billion ~ 10/cent
Uncertainties



F. Dulat, A. Lazopoulos, B. Mistlberger 2018

- ➤ Direct discovery for new channels and new resonants
- ➤ Indirect discovery with high precision
  - ➤ Wide resonance, Prepeak uptrend, Shape distortion



$$E - T_{SM} \propto \frac{1}{\Lambda_{BSM}^2}$$

$$(E \pm \delta E) - (T_{SM} \pm \delta T_{SM}) \propto \frac{1}{\Lambda_{BSM}^2}$$





➤ The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:





➤ The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

Hadronisation



➤ The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

Hadronisation

Parton Shower



➤ The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

Sillis

Hadronisation

Parton Shower

Hard Scattering



➤ The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

Time ordering

Hadronisation

Parton Shower

Hard Scattering

Proton→Parton



# Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$m|_{\geq 1} \to n|_{\geq 1}$$

Hard Scattering

Parton Shower



# Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$m|_{\geq 1} \to n|_{\geq 1}$$

Hard Scattering

Parton Shower



$$Q^{2} \frac{d\alpha_{S}}{dQ^{2}} = \beta(\alpha_{S}) = -\alpha_{S}^{2} \left(b_{0} + b_{1}\alpha_{S} + \cdots\right) \qquad \hat{\sigma} = \hat{\sigma}_{LO}^{(0,0)} + \left(\frac{\alpha}{2\pi}\right) \hat{\sigma}_{NLO}^{(0,1)} + \left(\frac{\alpha_{S}}{2\pi}\right) \hat{\sigma}_{NLO}^{(1,0)} + \left(\frac{\alpha_{S}}{2\pi}\right)^{2} \hat{\sigma}_{NNLO}^{(2,0)} + \cdots$$

Special Tools (non-perturbative-QFT)

 $m_q$ 

Proton→ Parton

**CKM** 

 $a_{\mu}^{\text{HVP}}$ 

 $(\Lambda/Q)^n$ 





 $\alpha_{S}$ 

# Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$m|_{\geq 1} \to n|_{\geq 1}$$

Hard Scattering

Parton Shower



$$Q^{2} \frac{\mathrm{d}\alpha_{S}}{\mathrm{d}Q^{2}} = \beta(\alpha_{S}) = -\alpha_{S}^{2} \left(b_{0} + b_{1}\alpha_{S} + \cdots\right) \qquad \hat{\sigma} = \hat{\sigma}_{LO}^{(0,0)} + \left(\frac{\alpha}{2\pi}\right) \hat{\sigma}_{NLO}^{(0,1)} + \left(\frac{\alpha_{S}}{2\pi}\right) \hat{\sigma}_{NLO}^{(1,0)} + \left(\frac{\alpha_{S}}{2\pi}\right)^{2} \hat{\sigma}_{NNLO}^{(2,0)} + \cdots$$

Special Tools (non-perturbative-QFT)

$$m_q$$

Proton→ Parton

 $a_{\mu}^{\text{HVP}}$ 





 $\alpha_{s}$ 

**CKM** 

 $\alpha_{\varsigma}$ 

 $(\Lambda/Q)^n$ 

Dedicate Tools (fitting)

Theory + Experiment

To fit NP model

Hadronisation

Proton → Parton

Fragmentation











Generalised polylogarithms

Riemann zeta values

**Elliptic functions** 

• • •

Unitarity

**Generalised Unitarity** 

Recursion

**Twistors** 

Differential equations

Integrand/Integral

**Sector decomposition** 

**Numerical unitarity** 

Finite field

**Auxiliary mass flow** 

Neural network amplitude

• • •





- ➤ Complete NNLO photon corrections via McMule framework
  - ➤ Full  $m_e$  and  $m_u$  dependence of RR, RV and factorisable VV (top).
  - $ightharpoonup m_e$  effects in mixed VV (bottom) estimated via massification.
  - ➤ IR divergence handled by FKS<sup>2</sup> subtraction method.
  - ➤ Fully differential MC tool for MUonE experiment.
  - ► Key input to extract  $\Delta \alpha_{\rm had}(Q^2)$  for  $Q^2 < 0$ .
  - ➤ Alternative dispersive approach from R-ratio to calculate  $a_{\mu}^{HVP}$ .

A. Broggio, T. Engel, A. Ferroglia et. al. JHEP 01 (2023) 112

| MUonE                                                       | $\sigma/\mu \mathrm{b}$ |              | $\delta K^{(i)}/\%$ |             |
|-------------------------------------------------------------|-------------------------|--------------|---------------------|-------------|
| Fiducial                                                    | S1                      | S2           | S1                  | S2          |
| $\sigma_0$                                                  | 106.44356               | 106.44356    |                     |             |
| g 5-                                                        | 106.99038(3)            | 102.86304(3) | 0.51372(3)          | -3.36377(3) |
| $\sigma_1 \left\{ egin{matrix} - \ + \ \end{matrix}  ight.$ | 107.41847(3)            | 103.18338(3) | 0.91589(3)          | -3.06283(3) |
| $\sigma_2\left\{egin{array}{c} - \ + \end{array} ight.$     | 106.97977(3)            | 102.88154(3) | -0.00992(4)         | 0.01799(4)  |
|                                                             | 107.41832(3)            | 103.19386(3) | -0.00013(4)         | 0.01016(4)  |

#### $pp \rightarrow t\bar{t}W$ , $\gamma JJ$ , $t\bar{t}H$ @NNLO QCD

- $\blacktriangleright$  Rapid progress of NNLO QCD corrections to 2  $\rightarrow$  3 scattering at the LHC
  - ➤ Automation of tree and 1-loop scattering ME with <u>OpenLoops</u>.
  - ➤ Processes dependent calculation/approximation for 2-loop-5-leg ME:
    - ightharpoonup Complete analytical amplitudes for  $\gamma q \bar{q} g g$ ,  $\gamma q \bar{q} Q \bar{Q}$  at 2-loop
    - ightharpoonup Eikonal or massification approximation to estimate  $Vt\bar{t}gg$ ,  $Vt\bar{t}q\bar{q}$  @ 2-loop
  - ➤ Mature machinery of NNLO subtraction methods for event generator:
    - > STRIPPER (Sector-improved), MATRIX (qT-slicing)











#### $2 \rightarrow 2$ @N3LO QCD

- ➤ Total cross section for pp and epem collider
  - $\blacktriangleright$  ME from 2  $\rightarrow$  3 @ NNLO + ME @ 3-loop.
  - ➤ Use reverse unitarity for IR pole cancellation.
  - ➤ Different perturbative-series convergent behaviour



X. Chen, X. Guan, C.-Q. He, X. Liu, Y.-Q. Ma 2209.14259



J. Baglio, C. Duhr, B. Mistlberger, R. Szafron JHEP 12 (2022) 066

# 7876

#### Perturbative QFT for Precision Predictions

#### $2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

- ➤ Fully differential N3LO correction in event generator
  - ► Recycle  $pp \to V + J$  @ NNLO with  $\tau_{\text{cut}}$  slicing  $d\sigma_{N^kLO}^F = \mathcal{H}_{N^kLO}^F \otimes d\sigma_{LO}^F\Big|_{\delta(\tau)} + \left[d\sigma_{N^{k-1}LO}^{F+jet} d\sigma_{N^kLO}^{F\ CT}\right]_{\tau > \tau_{cut}} + \mathcal{O}(\tau_{cut}^2/Q^2)$
  - ➤ Fiducial power correction removed via MC recoil technique.
- ightharpoonup Small  $p_T$  resummation at N3LL and partial N4LL



➤ Validation of inclusive total cross section for  $q_T^{cut} < 1$  GeV.

C. Duhr, F. Dulat, B. Mistlberger. PRL. 125, 172001 (2020)

- Separated in parton channels
- Foundation of numerical Monte Carlo setup for differential predictions.





#### $2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

- ➤ Fully differential N3LO correction in event generator
  - ➤ Recycle  $pp \to V + J$  @ NNLO with  $\tau_{cut}$  slicing

$$d\sigma_{N^kLO}^F = \mathcal{H}_{N^kLO}^F \otimes d\sigma_{LO}^F \Big|_{\delta(\tau)} + \left[ d\sigma_{N^{k-1}LO}^{F+jet} - d\sigma_{N^kLO}^{F\ CT} \right]_{\tau > \tau_{cut}} + \mathcal{O}(\tau_{cut}^2/Q^2)$$

- ➤ Fiducial power correction removed via MC recoil technique.
- ightharpoonup Small  $p_T$  resummation at N3LL and partial N4LL



S. Camarda, L. Cieri, G. Ferrera 2303.12781



 $d\sigma/dp_T^Z$ 

T. Neumann, J. Campbell PRD 107, L011506 (2023)

Standard Model Prediction Uncertainties



#### $2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

- ➤ Fully differential N3LO correction in event generator
  - ► Recycle  $pp \to V + J$  @ NNLO with  $\tau_{\text{cut}}$  slicing  $d\sigma_{N^kLO}^F = \mathcal{H}_{N^kLO}^F \otimes d\sigma_{LO}^F\Big|_{\delta(\tau)} + \left[d\sigma_{N^{k-1}LO}^{F+jet} d\sigma_{N^kLO}^{F\ CT}\right]_{\tau > \tau_{cut}} + \mathcal{O}(\tau_{cut}^2/Q^2)$
  - ➤ Fiducial power correction removed via MC recoil technique.
- ightharpoonup Small  $p_T$  resummation at N3LL and partial N4LL



S. Camarda, L. Cieri, G. Ferrera 2303.12781



 $d\sigma/dp_T^Z$ 

T. Neumann, J. Campbell PRD 107, L011506 (2023)

Standard Model Prediction Uncertainties



#### $2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

- ➤ Fully differential N3LO correction in event generator
  - ► Recycle  $pp \to V + J$  @ NNLO with  $\tau_{\text{cut}}$  slicing  $d\sigma_{N^k LO}^F = \mathcal{H}_{N^k LO}^F \otimes d\sigma_{LO}^F\Big|_{\delta(\tau)} + \left[d\sigma_{N^{k-1}LO}^{F+jet} d\sigma_{N^k LO}^{F\ CT}\right]_{\tau > \tau_{cut}} + \mathcal{O}(\tau_{cut}^2/Q^2)$
  - ➤ Fiducial power correction removed via MC recoil technique.
- ightharpoonup Small  $p_T$  resummation at N3LL and partial N4LL



S. Camarda, L. Cieri, G. Ferrera 2303.12781



G. Fontana

1 2 5 10 20 50 100 200 500  $q_T^{\Gamma I^{\dagger}}$  [GeV]

T. Neumann, J. Campbell PRD 107, L011506 (2023)

Standard Model Prediction Uncertainties





#### State-of-the-art Parton Shower accuracy

- ➤ Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
- ➤ NNLO + LL PS established for  $2 \rightarrow 2$  colour singlet and  $t\bar{t}$ .
  - ►  $pp \rightarrow W^{\pm}Z \rightarrow l^{+}l^{-}l^{'\pm}\nu_{l}^{'} + \text{[QCD, QED] shower}$ J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036





Standard Model Prediction Uncertainties

#### State-of-the-art Parton Shower accuracy

- ➤ Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
- ➤ NNLO + LL PS established for  $2 \rightarrow 2$  colour singlet and  $t\bar{t}$ .
  - >  $pp \rightarrow W^{\pm}Z \rightarrow l^{+}l^{-}l^{'\pm}\nu_{l}^{'} + [QCD, QED]$  shower J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036
- ➤ Several groups working on new PS framework aiming for NLL:
  - ➤ CVOLVER: Forshaw, Holguin, Plätzer DEDUCTOR: Nagy, Soper ALARIC: Assi, Herren, Höche, Krauss, Reichelt, Schönherr PANSCALES: van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, Halliwell, Medves, Dreyer, Scyboz, Karlberg, Monni, El-Menoufi
- ➤ Test of shower accuracy (PANSCALES):

$$\lim_{\alpha_s \to 0} \frac{\Sigma_{\text{PS}}(\lambda) - \Sigma_{\text{NLL}}(\lambda)}{\Sigma_{\text{NLL}}(\lambda)}, \quad \lambda = \alpha_s L$$

- ➤ PANSCALES: VBFH (initial and final NLL shower)
  - ➤ First NLL shower uncertainty estimation at ~10%
- ➤ ALARIC: massive shower (final NLL shower)

Alaric Collaboration 2208.06057, B. Assi, S. Höche 2307.00728

$$pp \rightarrow Z + PS$$

Leading jet transverse momentum  $(p_{t1})$ ,  $\alpha_s \rightarrow 0$ 



More validations in: PanScales Collaboration JHEP 11 (2022) 020

#### State-of-the-art Parton Shower accuracy

- ➤ Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
- ➤ NNLO + LL PS established for  $2 \rightarrow 2$  colour singlet and  $t\bar{t}$ .
  - ►  $pp \rightarrow W^{\pm}Z \rightarrow l^{+}l^{-}l^{'\pm}\nu_{l}^{'} + \text{[QCD, QED] shower}$ J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036
- ➤ Several groups working on new PS framework aiming for NLL:
  - ➤ CVOLVER: Forshaw, Holguin, Plätzer DEDUCTOR: Nagy, Soper ALARIC: Assi, Herren, Höche, Krauss, Reichelt, Schönherr PANSCALES: van Beekveld, Ferrario Ravasio, Hamilton, Salam, Soto-Ontoso, Soyez, Verheyen, Halliwell, Medves, Dreyer, Scyboz, Karlberg, Monni, El-Menoufi
- ➤ Test of shower accuracy (PANSCALES):

$$\lim_{\alpha_s \to 0} \frac{\Sigma_{\text{PS}}(\lambda) - \Sigma_{\text{NLL}}(\lambda)}{\Sigma_{\text{NLL}}(\lambda)}, \quad \lambda = \alpha_s L$$

- ➤ PANSCALES: VBFH (initial and final NLL shower)
  - ➤ First NLL shower uncertainty estimation at ~10%
- ➤ ALARIC: massive shower (final NLL shower)

$$pp \rightarrow H(VBF) + PS$$



M. van Beekveld, S. Ferrario Ravasio 2305.08645









#### $a_u^{HVP}$ Data driven vs. Lattice QCD

Data from SM White Paper Phys.Rept. 887 (2020)

| SM contrib.                     | $a^{contrib.}_{oldsymbol{\mu}}>$ | a $_{m{\mu}}^{contrib.} 	imes 10^{10}$ |  |
|---------------------------------|----------------------------------|----------------------------------------|--|
| HVP-LO $(e^+e^-)$               | 693.1                            | ± 4.0                                  |  |
| $HVP	ext{-}NLO\;(e^+e^-)$       | -9.83                            | ± 0.07                                 |  |
| HVP-NNLO $(e^+e^-)$             | 1.24                             | $\pm$ 0.01                             |  |
| HLbL-LO (pheno)                 | 9.2                              | ± 1.9                                  |  |
| HLbL (lattice <i>usd</i> )      | 7.8                              | ± 3.4                                  |  |
| $HLbL\ (pheno + lattice)$       | 9.0                              | ± 1.7                                  |  |
| HLbL-NLO (pheno)                | 0.2                              | $\pm$ 0.1                              |  |
| QED (5 loops)                   | 11 658 471.8931                  | ± 0.0104                               |  |
| EW (2 loops)                    | 15.36                            | ± 0.10                                 |  |
| HVP $(e^+e^-$ , LO + N(N)LO)    | 684.5                            | ± 4.0                                  |  |
| $HLbL\ (pheno + lattice + NLO)$ | 9.2                              | $\pm$ 1.8                              |  |
| SM Total                        | 11 659 181.0                     | ± 4.3                                  |  |



Table and diagram by L. Pareao at Zurich Workshop in June 2023

#### $a_u^{HVP}$ Data driven vs. Lattice QCD

Data from SM White Paper Phys.Rept. 887 (2020)

| SM contrib.                         | $a_{oldsymbol{\mu}}^{contrib.} 	imes \mathbf{10^{10}}$ |            |
|-------------------------------------|--------------------------------------------------------|------------|
| HVP-LO $(e^+e^-)$                   | 693.1                                                  | ± 4.0      |
| HVP-NLO $(e^+e^-)$                  | -9.83                                                  | ± 0.07     |
| HVP-NNLO $(e^+e^-)$                 | 1.24                                                   | $\pm$ 0.01 |
| HLbL-LO (pheno)                     | 9.2                                                    | ± 1.9      |
| HLbL (lattice <i>usd</i> )          | 7.8                                                    | ± 3.4      |
| HLbL (pheno+lattice)                | 9.0                                                    | $\pm$ 1.7  |
| HLbL-NLO (pheno)                    | 0.2                                                    | $\pm$ 0.1  |
| QED (5 loops)                       | 11 658 471.8931                                        | ± 0.0104   |
| EW (2 loops)                        | 15.36                                                  | $\pm 0.10$ |
| HVP $(e^+e^-$ , LO + N(N)LO)        | 684.5                                                  | ± 4.0      |
| HLbL (pheno $+$ lattice $+$ $NLO$ ) | 9.2                                                    | $\pm 1.8$  |
| SM Total                            | 11 659 181.0                                           | ± 4.3      |



Table and diagram by L. Pareao at Zurich Workshop in June 2023



- ightharpoonup Perturbative QCD is not valid for  $\Lambda=m_{\mu}\ll\Lambda_{QCD}$
- ➤ Use dispersive approach to include  $e^+e^- \rightarrow$  Hadron data via R-ratio:

$$a_{\mu,DA}^{LO-HVP} = \frac{\alpha^2}{3\pi^3} \int_{m_{\pi}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) R(s)$$



√s [GeV]

#### $a_u^{HVP}$ Data driven vs. Lattice QCD

Data from SM White Paper Phys.Rept. 887 (2020)

| SM contrib.                     | $a_{oldsymbol{\mu}}^{contrib.} 	imes 10^{10}$ |            |
|---------------------------------|-----------------------------------------------|------------|
| HVP-LO $(e^+e^-)$               | 693.1                                         | ± 4.0      |
| HVP-NLO $(e^+e^-)$              | -9.83                                         | $\pm$ 0.07 |
| HVP-NNLO $(e^+e^-)$             | 1.24                                          | $\pm$ 0.01 |
| HLbL-LO (pheno)                 | 9.2                                           | ± 1.9      |
| HLbL (lattice <i>usd</i> )      | 7.8                                           | ± 3.4      |
| HLbL (pheno+lattice)            | 9.0                                           | $\pm$ 1.7  |
| HLbL-NLO (pheno)                | 0.2                                           | $\pm$ 0.1  |
| QED (5 loops)                   | 11 658 471.8931                               | ± 0.0104   |
| EW (2 loops)                    | 15.36                                         | $\pm 0.10$ |
| $HVP\ (e^+e^-, LO + N(N)LO)$    | 684.5                                         | ± 4.0      |
| $HLbL\ (pheno + lattice + NLO)$ | 9.2                                           | $\pm 1.8$  |
| SM Total                        | 11 659 181.0                                  | ± 4.3      |



Table and diagram by L. Pareao at Zurich Workshop in June 2023



 $a_{\mu}^{HVP}$  Data driven vs. Lattice QCD

$$a_{\mu,DA}^{LO-HVP} = \frac{\alpha^2}{3\pi^3} \int_{m_{\pi}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) R(s)$$

$$a_{\mu,DA}^{LO-HVP} = \frac{\alpha^2}{3\pi^3} \int_{m_{\pi}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) R(s) \qquad a_{\mu,LQCD}^{LO-HVP} = 2\alpha^2 \int_0^{\infty} t^2 \mathrm{d}t K(m_{\mu}t) V(t)$$

➤ Time ↔ Energy Window

$$a_{\mu,LQCD}^{LO-HVP,\omega} = 2\alpha^2 \int_0^\infty t^2 dt K(m_\mu t) \Theta^\omega(t) V(t)$$

- $ightharpoonup [0, t_0] \oplus [t_0, t_1] \oplus [t_1, +\infty]$  for SD, W, LD.
- ➤ SD and W precisely predicted by Lattice QCD in continuum.
- > SD and W energy windows with precise  $e^+e^-$  EXP data.
- $\rightarrow a_u^W$  (intermediate window) has 3.7  $\sigma$  tension for DA vs. LQCD









## Parton Distributions and $\alpha_c$

#### State-of-the-art Parton Distribution Functions

- ➤ Theory input
  - ➤ Option A: solve proton wave function with Lattice QCD Recent progress in D. Chakrabarti, P. Choudhary et. al. 2304.09908
  - ➤ Option B: collinear factorisation  $f_a \rightarrow f_a(x, \mu)$ with p-QCD evolution of factorisation scale

$$\frac{d}{d\ln\mu^2} \begin{pmatrix} f_q \\ f_g \end{pmatrix} = \begin{pmatrix} P_{q \leftarrow q} & P_{q \leftarrow g} \\ P_{g \leftarrow q} & P_{g \leftarrow g} \end{pmatrix} \otimes \begin{pmatrix} f_q \\ f_g \end{pmatrix}$$

DGLAP evolution with

$$p_{a \leftarrow b} = \frac{\alpha_s}{\pi} P_{a \leftarrow b}^{(0)} + \frac{\alpha_s^2}{\pi^2} P_{a \leftarrow b}^{(1)} + \frac{\alpha_s^3}{\pi^3} P_{a \leftarrow b}^{(2)} + \cdots$$
1970's 1980 2004

$$\gamma_{q \leftarrow q}^{(3)}(N) = -\int_{0}^{1} \mathrm{d}x x^{N-1} P_{q \leftarrow q}^{(3)}(x) \quad G. Falcioni, F. Herzog et. al. Phys. Lett. B 842 (2023)$$

$$\gamma_{q\leftarrow g}^{(3)}(N) = -\int_0^1 \mathrm{d}x x^{N-1} P_{q\leftarrow g}^{(3)}(x) \quad G. Falcioni, F. Herzog, S. Moch, A. Vogt 2307.04158$$

$$\text{For } N = 2, 4, \cdots 20$$

$$Standard Model Prediction$$

- ➤ Experiment input
  - ➤ All past and current measurements of DIS, DY, jets etc. provide fitting targets of  $f_a(x, Q)$
  - ➤ Differential and total cross sections provide sensitivity in different regions of  $x \in [0,1]$
  - ➤ Various technology for fitting: functional form, neural network, fast evaluation grids etc.



Standard Model Prediction Uncertuinues

# Parton Distributions and $\alpha_{s}$

#### State-of-the-art Parton Distribution Functions

- ➤ Approximated N3LO PDF available: 0.08

  MSHT20aN3LO Eur.Phys.J.C 83 (2023) 4

  NNPDFaN3LO NNPDF preliminary
- ➤ More precise 4-loop splitting functions affect small x region.
- ➤ Large correction at aN3LO at small x region outside 68% c.l. region.
- ➤ Missing Higher Order Uncertainty (MHOU) not included in standard NNLO PDF.
- ➤ Crucial to consider MHOU and IHOU to understand consistency between NNLO and N3LO PDF.





#### G. Magni (NNPDF) @ Les Houches 23





### Parton Distributions and $\alpha_{\varsigma}$

#### The running strong coupling

- ► Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.

$$Q^{2} \frac{\mathrm{d}\alpha_{s}}{\mathrm{d}Q^{2}} = \beta(\alpha_{s}) = -\alpha_{s}^{2} \left(b_{0} + b_{1}\alpha_{s} + b_{2}\alpha_{s}^{2} + b_{3}\alpha_{s}^{3} + b_{4}\alpha_{s}^{4} + \cdots\right)$$
1973 1979 1993 1997 2017

Xuan Chen Standard Model Prediction Uncertainties 37

### Parton Distributions and $\alpha_{\varsigma}$

#### The running strong coupling

- $\triangleright$  Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.

TEEC: 
$$\frac{1}{\sigma} \frac{d\Sigma}{d\cos\phi} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{Ti}^{A} E_{Tj}^{A}}{\left(\sum_{k} E_{Tk}^{A}\right)^{2}} \delta(\cos\phi - \cos\varphi_{ij})$$





## Parton Distributions and $\alpha_{s}$

#### The running strong coupling

- ► Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.



Flavour Lattice Averaging Group Eur. Phys. J. C 82 (2022) 10

## Parton Distributions and $\alpha_s$

#### The running strong coupling

- $\triangleright$  Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.





Flavour Lattice Averaging Group Eur. Phys. J. C 82 (2022) 10

### Parton Distributions and $lpha_{\varsigma}$

#### The running strong coupling

- $\triangleright$  Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.



#### Error budget of ATLAS $Z p_T 8$ TeV

| Experimental uncertainty       | +0.00044 | -0.00044 |
|--------------------------------|----------|----------|
| PDF uncertainty                | +0.00051 | -0.00051 |
| Scale variations uncertainties | +0.00042 | -0.00042 |
| Matching to fixed order        | 0        | -0.00008 |
| Non-perturbative model         | +0.00012 | -0.00020 |
| Flavour model                  | +0.00021 | -0.00029 |
| QED ISR                        | +0.00014 | -0.00014 |
| N4LL approximation             | +0.00004 | -0.00004 |
| Total                          | +0.00084 | -0.00088 |

Missing: MHOU from aN3LOPDF; Dominant matching error; Systematic slicing error in DYTurbo and MCFM (double slicing);

Hadron Colliders

→ Optimistic uncertainty estimation



Flavour Lattice Averaging Group Eur. Phys. J. C 82 (2022) 10

## Parton Distributions and $\alpha_{\scriptscriptstyle S}$

#### The running strong coupling

- ► Both non-perturbative and perturbative  $\alpha_s$  determination depend on the beta-function.
- ➤ More and more precision predictions and measurements across 10³ magnitude.
- ➤ To understand the NP power correction in collinear factorisation (hadron collider):
  - $\rightarrow$  n=2 for inclusive DY, n=1 for hadronisation
  - ➤ What about Z/W at large  $p_T$ ?

$$\left(\frac{1 \text{ GeV}}{30 \text{ GeV}}\right)^n \approx 3\% (0.1\%) \text{ for } n=1 \text{ (n=2)}$$

- ➤ MC framework to estimate renormalon corrections:

  Ferraro Ravasio, Limatola, Nason JHEP 06 (2021) 018

  Carla, Ferrario Ravviso, et. al. JHEP 01 (2022) 093, JHEP 12 (2022) 062
- ► Confirm n=2 for  $p_T^Z$  at hadron colliders  $\rightarrow$  no need to update  $\alpha_s$  fitting related to DY data.

$$\sigma = \sum_{i,j} \int dx_1 dx_2 f_i(x_1) f_j(x_2) \hat{\sigma}(\hat{s}) \times \left[ 1 + \mathcal{O}(\Lambda/Q)^n \right]$$



► Linear NP corrections in  $e^+e^- \rightarrow 3$  jets ease the tension in  $\alpha_s$  fitting from C-parameter and thrust.

P. Nason, G. Zanderighi JHEP 06 (2023) 058

#### CONCLUSION AND OUTLOOK

- ➤ Reducing and understanding the Standard Model uncertainties is indispensable for future high energy experiment.
- ➤ It is about finding the shortest panel of a bucket rather than boosting the longest.
- ➤ Multiple solutions work together to test our understand of the Standard Model: perturbative and non-perturbative QFT, specialised fitting etc.
- ➤ There is rapid progress in the complexity of amplitudes, NNLO and N3LO phenomenology, parton shower framework, lattice QCD and machine learning technology etc.
- ➤ It is not only to predict a more precise number but to be confronted by conceptual problems that we previously ignored.

[Apologies for the personal selection of topics, and for the many interesting results not covered here]

#### CONCLUSION AND OUTLOOK

- ➤ Reducing and understanding the Standard Model uncertainties is indispensable for future high energy experiment.
- ➤ It is about finding the shortest panel of a bucket rather than boosting the longest.
- ➤ Multiple solutions work together to test our understand of the Standard Model: perturbative and non-perturbative QFT, specialised fitting etc.
- ➤ There is rapid progress in the complexity of amplitudes, NNLO and N3LO phenomenology, parton shower framework, lattice QCD and machine learning technology etc.
- ➤ It is not only to predict a more precise number but to be confronted by conceptual problems that we previously ignored.

[Apologies for the personal selection of topics, and for the many interesting results not covered here]

#### Thank You for Your Attention

### BACK UP SLIDES

# STATE-OF-THE-ART PREDICTIONS FOR $d\sigma_{N^3LO+N^{3(4)}LL}$

| FO                                           | $\alpha_s^n$ | $P_{ab}^{(n)}(x)$ | $\ln W(x_a,x_b,m_V,\overrightarrow{b},\mu=b_0/b) \sim \int_{\mu_h}^{\mu} d\bar{\mu}/\bar{\mu} \left(A(\alpha_s(\bar{\mu})) \ln \frac{m_V^2}{\bar{\mu}^2} + B(\alpha_s(\bar{\mu}))\right)$ |                   |                       |                       |                       |     |           |
|----------------------------------------------|--------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------|-----------------------|-----------------------|-----|-----------|
| $\frac{d  \hat{\sigma}_{NLO}^{V}}{d  q_{T}}$ | 1            |                   | $\ln^2(b^2m_V^2)$                                                                                                                                                                         | $\ln(b^2 m_V^2)$  | 1                     |                       |                       |     |           |
| $rac{d\hat{\sigma}^{V}_{NNLO}}{dq_{T}}$     | 2            |                   | $\ln^3(b^2m_V^2)$                                                                                                                                                                         | $\ln^2(b^2m_V^2)$ | $\ln(b^2 m_V^2)$      | 1                     |                       |     |           |
| $\frac{d\hat{\sigma}^{V}_{N^{3}LO}}{dq_{T}}$ | 3            |                   | $\ln^4(b^2m_V^2)$                                                                                                                                                                         | $\ln^3(b^2m_V^2)$ | $\ln^2(b^2m_V^2)$     | $\ln(b^2 m_V^2)$      | 1                     |     |           |
| $\frac{d\hat{\sigma}^{V}_{N^{4}LO}}{dq_{T}}$ | 4            |                   | $\ln^5(b^2m_V^2)$                                                                                                                                                                         | $\ln^4(b^2m_V^2)$ | $\ln^3(b^2m_V^2)$     | $\ln^2(b^2m_V^2)$     | $ln(b^2m_V^2)$        | 1   |           |
|                                              |              |                   | •••                                                                                                                                                                                       |                   |                       |                       |                       |     | •••       |
| $\frac{d\hat{\sigma}^{V}_{N^{k}LO}}{dq_{T}}$ | K            |                   | $\ln^{k+1}(b^2m_V^2)$                                                                                                                                                                     | $\ln^k(b^2m_V^2)$ | $\ln^{k-1}(b^2m_V^2)$ | $\ln^{k-2}(b^2m_V^2)$ | $\ln^{k-3}(b^2m_V^2)$ | ••• |           |
| 37.0.                                        |              |                   | •••                                                                                                                                                                                       |                   | 2111                  | •••                   |                       |     |           |
|                                              | Resum        |                   | LL                                                                                                                                                                                        | NLL               | NNLL                  | N3LL                  | N4LL                  | ••• | Nk+1LL    |
|                                              | Α            |                   | A1 🗸                                                                                                                                                                                      | A2 🗸              | A3 <b>✓</b>           | A4 <b>✓</b>           | A5 ×                  | ••• | $A_{k+2}$ |
|                                              | В            |                   |                                                                                                                                                                                           | B1 🗸              | B2 <b>✓</b>           | B3 <b>✓</b>           | B4 🗸                  |     | $B_{k+1}$ |

### Predictions of Colourless pT at Hadron Collider

 $p_T$  Spectrum = multi-scale problem

- ➤ Beyond QCD improved parton model
  - >pQCD describes the tail of spectrum
  - ➤ Large logarithmic divergence

$$\ln \frac{p_T}{Q} \text{ as } p_T \to 1 \text{ GeV}$$

- ➤ Various LP resummation schemes
- ➤ Multiple solutions in transition region
- ➤Non-perturbative effects ~ 1 GeV

  (Short distance and long distance effects)



### Predictions of Colourless pT at Hadron Collider

 $p_T$  Spectrum = multi-scale problem

- ➤ Beyond QCD improved parton model
  - >pQCD describes the tail of spectrum
  - ➤ Large logarithmic divergence

$$\ln \frac{p_T}{Q} \text{ as } p_T \to 1 \text{ GeV}$$

- ➤ Various LP resummation schemes
- ➤ Multiple solutions in transition region
- ➤Non-perturbative effects ~ 1 GeV

  (Short distance and long distance effects)



## Anatomy of differential cross sections $d\hat{\sigma}_{ab}$

- ➤ State-of-the-art differential N3LO predictions
  - $\succ$  Fully differential N3LO Drell-Yan production (via  $\gamma^*$ ) (XC, T. Gehrmann, N. Glover, A. Huss, T.-Z. Yang, H. X. Zhu 2021)
  - ➤ Apply qt-slicing at N3LO with SCET factorisation and expand to N3LO:

$$\begin{split} \frac{d^{3}\sigma}{dQ^{2}d^{2}\vec{q}_{T}dy} &= \int \frac{d^{2}b_{\perp}}{(2\pi)^{2}}e^{-iq_{\perp}\cdot b_{\perp}} \sum_{q} \sigma_{\text{LO}}^{\gamma^{*}} H_{q\bar{q}} \bigg[ \sum_{k} \int_{x_{1}}^{1} \frac{dz_{1}}{z_{1}} \mathcal{I}_{qk} \left( z_{1}, b_{T}^{2}, \mu \right) f_{k/h_{1}}(x_{1}/z_{1}, \mu) \\ &\times \sum_{j} \int_{x_{2}}^{1} \frac{dz_{2}}{x_{2}} \mathcal{I}_{\bar{q}j} \left( z_{2}, b_{T}^{2}, \mu \right) f_{j/h_{2}}(x_{2}/z_{2}, \mu) \mathcal{S} \left( b_{\perp}, \mu \right) + \left( q \leftrightarrow \bar{q} \right) \bigg] + \mathcal{O} \left( \frac{q_{T}^{2}}{Q^{2}} \right) \end{split}$$

- ➤ All factorised functions are recently known up to N3LO:
  - 1) 3-loop hard function  $H_{q\bar{q}}^{(3)}$  (T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli, C. Studerus 2010)
  - 2) Transverse-momentum-dependent (TMD) soft function  $S(b_{\perp},\mu)$  at  $\alpha_s^3$  (Y. Li, H.X. Zhu 2016)
  - 3) Matching kernel of TMD beam function  $I_{qk}$  at  $\alpha_s^3$  (M.-X. Luo, T.-Z. Yang, H. X. Zhu, Y. J. Zhu 2019, M. A. Ebert, B. Mistlberger, G. Vita 2020)
- ➤ Apply qt cut to factorise N3LO contribution into two parts:

$$d\sigma_{N^3LO}^{\gamma^*} = \left[ \mathcal{H}^{\gamma^*} \otimes d\sigma^{\gamma^*} \right]_{N^3LO} \Big|_{\delta(p_{T,\gamma^*})} + \left[ d\sigma_{NNLO}^{\gamma^* + jet} - d\sigma_{N^3LO}^{\gamma^* \ CT} \right]_{p_{T,\gamma^*} > qt_{cut}} + \mathcal{O}(qt_{cut}^2/Q^2)$$



+0.09(13)

-7.98(36)

qq + qQ

Total



+0.09(17)

-8.01(58)

+0.17

-8.03



XC, T. Gehrmann, N. Glover, et. al. PRL 128, 252001 (2022)

### Precision Predictions at Hadron Collider

#### $2 \rightarrow 1$ @ N3LO (+ N3LL) QCD



XC, T. Gehrmann, N. Glover, et. al. PRL 128, 252001 (2022)

DYTurbo result with fiducial power correction

| Order                                                 | $N^3LO$                      |
|-------------------------------------------------------|------------------------------|
| $q_T 	ext{ subtr. } (q_T^{	ext{cut}} = 4 	ext{ GeV})$ | $747.1 \pm 0.7  \mathrm{pb}$ |
| recoil $q_T$ subtr.                                   | $745.7 \pm 0.7  \mathrm{pb}$ |

S. Camarda, L. Cieri, G. Ferrera Eur. Phys. J. C 82 (2022) 6

- ➤ Solid horizontal lines: NLO, NNLO at 1 GeV, N3LO at 4 GeV with MC error.
  - ➤ N3LO shows no plateau in 1905.05171
- ➤ Pale dots are values used by DYTurbo in 2103.04974 and 2303.12781 (taken from 1905.05171).
  - ➤ Fiducial power corrections are not included.
  - ➤ Leads to 30% difference of N3LO coefficients at  $q_T^{cut} = 4 \; GeV$ .
- ➤ Solid dots are corrected values with fiducial power correction.
  - ➤ Central value shifts 2 pb starting from NLO (the dominant error).
  - $\succ$  ±2.1 pb uncertainty from MC and  $q_T^{cut}$  (estimated from [3,5] GeV region).
  - $\triangleright$  Not included in DYTurbo update result with  $\pm 0.7$  pb uncertainty.

DYTurbo result without fiducial power correction cited in ATLAS  $\alpha_s$  fitting

| Order                                                | NLO           | NNLO          | $N^3LO$                             |
|------------------------------------------------------|---------------|---------------|-------------------------------------|
| $\sigma(pp \to Z/\gamma^* \to l^+ l^-) \text{ [pb]}$ | $766.3 \pm 1$ | $757.4 \pm 2$ | $746.1 \pm 2.5$                     |
| Order                                                | NLL+NLO       | NNLL+NNLO     | N <sup>3</sup> LL+N <sup>3</sup> LO |
| $\sigma(pp \to Z/\gamma^* \to l^+l^-) \text{ [pb]}$  | $773.7 \pm 1$ | $759.8 \pm 2$ | $749.6 \pm 2.5$                     |

S. Camarda, L. Cieri, G. Ferrera Eur. Phys. J. C 82 (2022) 6

### Non-Perturbative QFT for precision predictions

 $a_{\mu}^{HVP}$  Data driven vs. Lattice QCD

$$a_{\mu,DA}^{LO-HVP} = \frac{\alpha^2}{3\pi^3} \int_{m_\pi^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) R(s)$$

$$a_{\mu,DA}^{LO-HVP} = \frac{\alpha^2}{3\pi^3} \int_{m_{\pi}^2}^{\infty} \frac{\mathrm{d}s}{s} K(s) R(s) \qquad a_{\mu,LQCD}^{LO-HVP} = 2\alpha^2 \int_0^{\infty} t^2 \mathrm{d}t K(m_{\mu}t) V(t)$$

➤ Time ↔ Energy Window

$$a_{\mu,LQCD}^{LO-HVP,\omega} = 2\alpha^2 \int_0^\infty t^2 dt K(m_\mu t) \Theta^\omega(t) V(t)$$

- $ightharpoonup [0, t_0] \oplus [t_0, t_1] \oplus [t_1, +\infty]$  for SD, W, LD.
- ➤ SD and W precisely predicted by Lattice QCD in continuum.
- > SD and W energy windows with precise  $e^+e^-$  EXP data.
- $\rightarrow a_u^W$  (intermediate window) has 3.7  $\sigma$  tension for DA vs. LQCD







Standard Model Prediction Uncertainties

### W mass in CDFII measurement

 $> d\sigma/dm_T^W$  two templates with  $\Delta m_W = 100$  MeV





 $\Delta m_W = 100$  MeV ~ 0.5-2% change in  $d\sigma/dm_T^W \longrightarrow \Delta m_W = 10$  MeV ~ 0.1% precision in  $d\sigma/dm_T^W$ 

### Precision predictions in CDF II

- ➤CDF II use ResBos to generate theory templates
  - ➤ NLO+NNLL accuracy for W/Z production

Balazs, Brock, Landry, Nadolsky and Yuan '97 to '03

►CSS factorisation and resummation of  $p_T$  in b space:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}Q^2\,\mathrm{d}^2\vec{p}_T\,\mathrm{d}y\,\mathrm{d}\cos\theta\,\mathrm{d}\phi} = \sigma_0 \int \frac{\mathrm{d}^2b}{(2\pi)^2} e^{i\vec{p}_T\cdot\vec{b}} e^{-S(b)}$$

$$\times C \otimes f(x_1,\mu) C \otimes f(x_2,\mu) + Y(Q,\vec{p}_T,x_1,x_2,\mu_R,\mu_F)$$

Collins, Soper and Sterman`85

Non-perturbative effects at  $\alpha_s(\Lambda)$  and large b:

$$S(b) = S_{\rm NP} S_{\rm Pert}$$
,

Collins and Soper `77

$$S_{\text{Pert}}(b) = \int_{C_1^2/(b^*)^2}^{C_2^2 Q^2} \frac{\mathrm{d}\bar{\mu}^2}{\bar{\mu}^2} \left[ \ln \left( \frac{C_2^2 Q^2}{\bar{\mu}^2} \right) A(\bar{\mu}, C_1) + B(\bar{\mu}, C_1, C_2) \right]$$

$$S_{ ext{NP}} = \left[ -g_1 - g_2 \ln \left( rac{Q}{2Q_0} 
ight) - g_1 g_3 \ln \left( 100 x_1 x_2 
ight) 
ight] b^2$$

 $S_{NP}$  assumes the BLNY functional form

Brock, Landry, Nadolsky and Yuan `02

➤ Use data driven method:

| Fix           | g1                | g2           | g3                | $lpha_{_S}$  |
|---------------|-------------------|--------------|-------------------|--------------|
| $p_T^Z$       | Global<br>fit `03 | CDFII<br>fit | Global fit<br>`03 | CDFII<br>fit |
| $p_T^Z/p_T^W$ |                   |              | Global fit<br>`03 |              |

Global fit by Brock, Landry, Nadolsky and Yuan `03

 $m_T^W \sim 0.7 \text{ MeV}, p_T^l \sim 2.3 \text{ MeV}, p_T^\nu \sim 0.9 \text{ MeV}$ 

CDF supplementary materials `22

Scale uncertainty of  $p_T^Z/p_T^W$  by DYQT Bozzi, Catani, Ferrera, de Florian, Grazzini `09 `11

 $m_T^W \sim 3.5 \text{ MeV}, p_T^l \sim 10.1 \text{ MeV}, p_T^\nu \sim 3.9 \text{ MeV}$ 

Not included in final result CDF sm<sup>22</sup>

## $\alpha_s$ Fitting With NP Corrections

► Linear NP corrections in  $e^+e^- \rightarrow 3$  jets ease the tension in  $\alpha_s$  fitting from C-parameter and thrust.





