

Standard Model Prediction Uncertainties

-SM has a wide range of theoretical uncertainties

$$
\begin{aligned}
a_{\mu}= & 116591810(43) \times 10^{-11} \\
& \text { Phys. Reports } 887(2020) 1-116 \\
a_{e}= & 1159652180.252(95) \times 10^{-12} \\
& \text { Nature (London) } 588,61(2020) \\
\alpha^{-1}= & 137.035999166(15) \\
& \text { Phys. Rev.Lett. 130,071801 }(2023)
\end{aligned}
$$

F. Dulat, A. Lazopoulos, B. Mistlberger 2018

Standard Model Prediction Uncertainties

-SM has a wide range of theoretical uncertainties

$$
\begin{aligned}
a_{\mu}= & 116591810(43) \times 10^{-11} \\
& \text { Phys. Reports } 887(2020) 1-116 \\
a_{e}= & 1159652180.252(95) \times 10^{-12} \\
& \text { Nature (London) } 588,61(2020) \\
\alpha^{-1}= & \left.\begin{array}{l}
137.035999166(15) \\
\\
\text { Phys. Rev. Lett. 130,071801 }
\end{array}\right)
\end{aligned}
$$

0.1/billion ~ 10/cent
 Uncertainties

F. Dulat, A. Lazopoulos, B. Mistlberger 2018

Standard Model Prediction Uncertainties

-SM has a wide range of theoretical uncertainties

$$
\begin{aligned}
& a_{\mu}= 116591810(43) \times 10^{-11} \\
& \text { Phys. Reports } 887(2020) 1-116 \\
& a_{e}= 1159652180.252(95) \times 10^{-12} \\
& \text { Nature }(\text { London }) 588,61(2020) \\
& \alpha^{-1}= 137.035999166(15) \\
& \text { Phys. Rev. Lett.130,071801 }(2023)
\end{aligned}
$$

0.1/billion ~ 10/cent
 Uncertainties

Standard Model Prediction Uncertainties

-SM has a wide range of theoretical uncertainties

$$
\begin{aligned}
& a_{\mu}= 116591810(43) \times 10^{-11} \\
& \text { Phys. Reports } 887(2020) 1-116 \\
& a_{e}= 1159652180.252(95) \times 10^{-12} \\
& \text { Nature (London) } 588,61(2020) \\
& \alpha^{-1}= 137.035999166(15) \\
& \text { Phys. Rev. Lett.130,071801 }(2023)
\end{aligned}
$$

0.1/billion ~ 10/cent
 Uncertainties

F. Dulat, A. Lazopoulos, B. Mistlberger 2018
> Direct discovery for new channels and new resonants

- Indirect discovery with high precision
> Wide resonance, Prepeak uptrend, Shape distortion

$$
E-T_{S M} \propto \frac{1}{\Lambda_{B S M}^{2}}
$$

Collider Event in Theorist's Eye

- The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

PYTHIA 8.3

Collider Event in Theorist's Eye

> The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

PYTHIA 8.3

Collider Event in Theorist's Eye

- The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

PYTHIA 8.3

Collider Event in Theorist's Eye

- The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

PYTHIA 8.3

Collider Event in Theorist's Eye

- The idea of factorisation in Quantum Field Theory plays important role to help theorists understanding complex high energy processes:

PYTHIA 8.3

Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$
\begin{gathered}
\left.\left.m\right|_{\geq 1} \rightarrow n\right|_{\geq 1} \quad \text { Hard Scattering } \quad \text { Parton Shower } \\
Q^{2} \frac{\mathrm{~d} \alpha_{S}}{\mathrm{~d} Q^{2}}=\beta\left(\alpha_{S}\right)=-\alpha_{S}^{2}\left(b_{0}+b_{1} \alpha_{S}+\cdots\right) \quad \hat{\sigma}=\hat{\sigma}_{L O}^{(0,0)}+\left(\frac{\alpha}{2 \pi}\right) \hat{\sigma}_{N L O}^{(0,1)}+\left(\frac{\alpha_{S}}{2 \pi}\right) \hat{\sigma}_{N L O}^{(1,0)}+\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \hat{\sigma}_{N N L O}^{(2,0)}+\cdots
\end{gathered}
$$

Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$
\begin{gathered}
\left.\left.m\right|_{\geq 1} \rightarrow n\right|_{\geq 1} \quad \text { Hard Scattering } \quad \text { Parton Shower } \\
Q^{2} \frac{\mathrm{~d} \alpha_{S}}{\mathrm{~d} Q^{2}}=\beta\left(\alpha_{S}\right)=-\alpha_{S}^{2}\left(b_{0}+b_{1} \alpha_{S}+\cdots\right) \quad \hat{\sigma}=\hat{\sigma}_{L O}^{(0,0)}+\left(\frac{\alpha}{2 \pi}\right) \hat{\sigma}_{N L O}^{(0,1)}+\left(\frac{\alpha_{S}}{2 \pi}\right) \hat{\sigma}_{N L O}^{(1,0)}+\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \hat{\sigma}_{N N L O}^{(2,0)}+\cdots
\end{gathered}
$$

Special Tools (non-perturbative-QFT)

Theory Tools for Precision Predictions

General Tools (perturbative-QFT)

$$
\begin{gathered}
\left.\left.m\right|_{\geq 1} \rightarrow n\right|_{\geq 1} \quad \text { Hard Scattering } \quad \text { Parton Shower } \\
Q^{2} \frac{\mathrm{~d} \alpha_{S}}{\mathrm{~d} Q^{2}}=\beta\left(\alpha_{S}\right)=-\alpha_{S}^{2}\left(b_{0}+b_{1} \alpha_{S}+\cdots\right) \quad \hat{\sigma}=\hat{\sigma}_{L O}^{(0,0)}+\left(\frac{\alpha}{2 \pi}\right) \hat{\sigma}_{N L O}^{(0,1)}+\left(\frac{\alpha_{S}}{2 \pi}\right) \hat{\sigma}_{N L O}^{(1,0)}+\left(\frac{\alpha_{S}}{2 \pi}\right)^{2} \hat{\sigma}_{N N L O}^{(2,0)}+\cdots
\end{gathered}
$$

Special Tools (non-perturbative-QFT)

Dedicate Tools (fitting)

Theory + Experiment To fit NP model

Hadronisation

Fragmentation

Perturbative QFT for Precision Predictions

Perturbative QFT for Precision Predictions

Diagrams: FeynGame
Comput.Phys.Commun. 256 (2020) 107465

Perturbative QFT for Precision Predictions

Generalised polylogarithms
Riemann zeta values
Elliptic functions

Unitarity
Generalised Unitarity
Recursion
Twistors
Differential equations
Integrand/Integral
Sector decomposition
Numerical unitarity
Finite field
Auxiliary mass flow
Neural network amplitude

Perturbative QFT for Precision Predictions

$e \mu \rightarrow e \mu @ N N L O$ QED

> Complete NNLO photon corrections via McMule framework

- Full m_{e} and m_{μ} dependence of RR, RV and factorisable VV (top).
$>m_{e}$ effects in mixed VV (bottom) estimated via massification.
\rightarrow IR divergence handled by FKS ${ }^{2}$ subtraction method.
- Fully differential MC tool for MUonE experiment.
$>$ Key input to extract $\Delta \alpha_{\text {had }}\left(Q^{2}\right)$ for $Q^{2}<0$.
> Alternative dispersive approach from R-ratio to calculate $a_{\mu}^{H V P}$.

A. Broggio, T. Engel, A. Ferroglia et.al. JHEP 01 (2023) 112

MUonE Fiducial	$\sigma / \mu \mathrm{b}$		$\delta K^{(i)} / \%$	
	S1	S2	S1	S2
σ_{0}	106.44356	106.44356		
$\sigma_{1}\left\{_{+}^{-}\right.$	106.99038(3)	102.86304(3)	0.51372(3)	-3.36377 (3)
	107.41847(3)	103.18338(3)	0.91589(3)	$-3.06283(3)$
$\sigma_{2}\left\{_{+}^{-}\right.$	106.97977(3)	102.88154(3)	-0.00992(4)	0.01799(4)
	107.41832(3)	103.19386(3)	-0.00013(4)	0.01016(4)

Perturbative QFT for Precision Predictions

$p p \rightarrow t \bar{t} W, \gamma J J, t \bar{t} H @ N N L O Q C D$

> Rapid progress of NNLO QCD corrections to $2 \rightarrow 3$ scattering at the LHC

- Automation of tree and 1-loop scattering ME with OpenLoops.
- Processes dependent calculation/approximation for 2-loop-5-leg ME:
> Complete analytical amplitudes for $\gamma q \bar{q} g g, \gamma q \bar{q} Q \bar{Q}$ at 2-loop

> Mature machinery of NNLO subtraction methods for event generator:
> STRIPPER (Sector-improved), MATRIX (qT-slicing)

loops + legs + scale $=7 \sim 8$

Also available @ NNLO

$$
\begin{aligned}
p p & \rightarrow \gamma \gamma J \\
p p & \rightarrow J J J \\
p p & \rightarrow \gamma \gamma \gamma \\
p p & \rightarrow W b \bar{b}
\end{aligned}
$$

Perturbative QFT for Precision Predictions

Higgs (ggF HTL) total, Anastasiou, Duhr, et al.
$\begin{gathered}\text { Higgs (ggF HTL) jet veto, Banfi, Caola, Dreyer, et al. }\end{gathered}$ Anastasiou, Duhr, Dulat, Furlan, Gehrmann et al.

16
 - Higgs (bbF) total, Duhr, Hirschi, et. al.

N3LO QCD

 PhenomenologyStudy by year

$$
\text { loops }+ \text { legs }+ \text { scale }=7 \sim 8
$$

Perturbative QFT for Precision Predictions

$2 \rightarrow 2$ @N3LO QCD

- Total cross section for pp and epem collider
\rightarrow ME from $2 \rightarrow 3$ @ NNLO + ME @ 3-loop.
> Use reverse unitarity for IR pole cancellation.
> Different perturbative-series convergent behaviour

X. Chen, X. Guan, C.-Q. He, X. Liu, Y.-Q. Ma 2209.14259

J. Baglio, C. Duhr, B. Mistlberger, R. Szafron JHEP 12 (2022) 066

Perturbative QFT for Precision Predictions

$2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

> Fully differential N3LO correction in event generator
> Recycle $p p \rightarrow V+J$ @ NNLO with $\tau_{\text {cut }}$ slicing

$$
\mathrm{d} \sigma_{N^{k} L O}^{F}=\left.\mathscr{H}_{N^{k} L O}^{F} \otimes \mathrm{~d} \sigma_{L O}^{F}\right|_{\delta(\tau)}+\left[\mathrm{d} \sigma_{N^{k-1} L O}^{F+j e t}-\mathrm{d} \sigma_{N^{k} L O}^{F C T}\right]_{\tau>\tau_{c u t}}+\mathcal{O}\left(\tau_{c u t}^{2} / Q^{2}\right)
$$

> Fiducial power correction removed via MC recoil technique.
$>$ Small p_{T} resummation at N3LL and partial N4LL

Perturbative QFT for Precision Predictions

$2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

> Fully differential N3LO correction in event generator

$$
>\text { Recycle } p p \rightarrow V+J @ \text { NNLO with } \tau_{\text {cut }} \text { slicing }
$$

$$
\mathrm{d} \sigma_{N^{k} L O}^{F}=\left.\mathscr{H}_{N^{k} L O}^{F} \otimes \mathrm{~d} \sigma_{L O}^{F}\right|_{\delta(\tau)}+\left[\mathrm{d} \sigma_{N^{k-1} L O}^{F+j e t}-\mathrm{d} \sigma_{N^{k} L O}^{F C T}\right]_{\tau>\tau_{\text {cut }}}+\mathcal{O}\left(\tau_{c u t}^{2} / Q^{2}\right)
$$

> Fiducial power correction removed via MC recoil technique.
$>$ Small p_{T} resummation at N3LL and partial N4LL

$\mathrm{d} \sigma / \mathrm{d} p_{T}^{Z}$

S. Camarda, L. Cieri, G. Ferrera 2303.12781

$q_{T}^{l^{-]^{+}}}[\mathrm{GeV}]$
T. Neumann, J. Campbell PRD 107, L011506 (2023)

Perturbative QFT for Precision Predictions

$2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

- Fully differential N3LO correction in event generator
$>$ Recycle $p p \rightarrow V+J @$ NNLO with $\tau_{\text {cut }}$ slicing

$$
\mathrm{d} \sigma_{N^{k} L O}^{F}=\left.\mathscr{H}_{N^{k} L O}^{F} \otimes \mathrm{~d} \sigma_{L O}^{F}\right|_{\delta(\tau)}+\left[\mathrm{d} \sigma_{N^{k-1} L O}^{F+j e t}-\mathrm{d} \sigma_{N^{k} L O}^{F C T}\right]_{\tau>\tau_{c u t}}+\mathcal{O}\left(\tau_{c u t}^{2} / Q^{2}\right)
$$

> Fiducial power correction removed via MC recoil technique.
$>$ Small p_{T} resummation at N3LL and partial N4LL

$\mathrm{d} \sigma / \mathrm{d} p_{T}^{Z}$

S. Camarda, L. Cieri, G. Ferrera 2303.12781

$q_{T}^{l^{-]^{+}}}[\mathrm{GeV}]$
T. Neumann, J. Campbell PRD 107, L011506 (2023)

Perturbative QFT for Precision Predictions

$2 \rightarrow 1$ @ N3LO (+ N3LL) QCD

> Fully differential N3LO correction in event generator
> Recycle $p p \rightarrow V+J$ @ NNLO with $\tau_{\text {cut }}$ slicing

$$
\mathrm{d} \sigma_{N^{k} L O}^{F}=\left.\mathscr{H}_{N^{k} L O}^{F} \otimes \mathrm{~d} \sigma_{L O}^{F}\right|_{\delta(\tau)}+\left[\mathrm{d} \sigma_{N^{k-1} L O}^{F+j e t}-\mathrm{d} \sigma_{N^{k} L O}^{F C T}\right]_{\tau>\tau_{\text {cut }}}+\mathcal{O}\left(\tau_{c u t}^{2} / Q^{2}\right)
$$

- Fiducial power correction removed via MC recoil technique.

G. Fontana
- Small p_{T} resummation at N3LL and partial N4LL

S. Camarda, L. Cieri, G. Ferrera 2303.12781

Perturbative QFT for Precision Predictions

State-of-the-art Parton Shower accuracy

- Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
$>$ NNLO + LL PS established for $2 \rightarrow 2$ colour singlet and $t \bar{t}$.
$>p p \rightarrow W^{ \pm} Z \rightarrow l^{+} l^{-} l^{\prime} \nu_{l}^{\prime}+[\mathrm{QCD}, \mathrm{QED}]$ shower
J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036

Perturbative QFT for Precision Predictions

State-of-the-art Parton Shower accuracy

> Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
\rightarrow NNLO + LL PS established for $2 \rightarrow 2$ colour singlet and $t \bar{t}$.
$>p p \rightarrow W^{ \pm} Z \rightarrow l^{+} l^{-} l^{\prime} \pm \nu_{l}^{\prime}+[\mathrm{QCD}, \mathrm{QED}]$ shower
J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036
> Several groups working on new PS framework aiming for NLL:
> CVOLVER: Forshaw, Holguin, Plätzer DEDUCTOR: Nagy, Soper ALARIC: Assi, Herren, Höche, Krauss, Reichelt, Schönherr PANSCALES: van Beekveld, Ferrario Ravasio, Hamilton, Salam, SotoOntoso, Soyez, Verheyen, Halliwell, Medves, Dreyer, Scyboz, Karlberg, Monni, El-Menoufi
$>$ Test of shower accuracy (PANSCALES):

$$
\lim _{\alpha_{s} \rightarrow 0} \frac{\Sigma_{\mathrm{PS}}(\lambda)-\Sigma_{\mathrm{NLL}}(\lambda)}{\Sigma_{\mathrm{NLL}}(\lambda)}, \quad \lambda=\alpha_{s} L
$$

> PANSCALES: VBFH (initial and final NLL shower)

- First NLL shower uncertainty estimation at $\sim 10 \%$
> ALARIC: massive shower (final NLL shower)
Alaric Collaboration 2208.06057, B. Assi, S. Höche 2307.00728

Perturbative QFT for Precision Predictions

State-of-the-art Parton Shower accuracy

- Standard parton showers are Leading Logarithmic (LL) accurate. (SHERPA, PYTHIA, DIRE, GENEVA, HERWIG, VINCIA etc.)
\rightarrow NNLO + LL PS established for $2 \rightarrow 2$ colour singlet and $t \bar{t}$.
$>p p \rightarrow W^{ \pm} Z \rightarrow l^{+} l^{-} l^{\prime} \pm \nu_{l}^{\prime}+[\mathrm{QCD}, \mathrm{QED}]$ shower
J. M. Lindert, D. Lombardi, M. Wiesemann et. al. JHEP 11 (2022) 036
> Several groups working on new PS framework aiming for NLL:
> CVOLVER: Forshaw, Holguin, Plätzer DEDUCTOR: Nagy, Soper ALARIC: Assi, Herren, Höche, Krauss, Reichelt, Schönherr PANSCALES: van Beekveld, Ferrario Ravasio, Hamilton, Salam, SotoOntoso, Soyez, Verheyen, Halliwell, Medves, Dreyer, Scyboz, Karlberg, Monni, El-Menoufi
> Test of shower accuracy (PANSCALES):

$$
\lim _{\alpha_{s} \rightarrow 0} \frac{\Sigma_{\mathrm{PS}}(\lambda)-\Sigma_{\mathrm{NLL}}(\lambda)}{\Sigma_{\mathrm{NLL}}(\lambda)}, \quad \lambda=\alpha_{s} L
$$

> PANSCALES: VBFH (initial and final NLL shower)
$>$ First NLL shower uncertainty estimation at $\sim 10 \%$
> ALARIC: massive shower (final NLL shower)

M. van Beekveld, S. Ferrario Ravasio 2305.08645

Non-Perturbative QFT for Precision Predictions

Non-Perturbative QFT for Precision Predictions

$a_{\mu}^{H V P}$ Data driven vs. Lattice QCD
Data from SM White Paper Phys.Rept. 887 (2020)

SM contrib.	$\mathbf{a}_{\boldsymbol{\mu}}^{\text {contrib. }} \times \mathbf{1 0}^{\mathbf{1 0}}$	
HVP-LO $\left(e^{+} e^{-}\right)$	693.1	± 4.0
HVP-NLO $\left(e^{+} e^{-}\right)$	-9.83	± 0.07
HVP-NNLO $\left(e^{+} e^{-}\right)$	1.24	± 0.01
HLbL-LO (pheno)	9.2	± 1.9
HLbL (lattice usd $)$	7.8	± 3.4
HLbL (pheno+lattice)	9.0	± 1.7
HLbL-NLO (pheno)	0.2	± 0.1
QED (5 loops)	11658471.8931	± 0.0104
EW (2 loops)	15.36	± 0.10
HVP ($e^{+} e^{-}$, LO + N(N)LO)	684.5	± 4.0
HLbL (pheno + lattice + NLO)	9.2	± 1.8
SM Total	11659181.0	± 4.3

Table and diagram by L. Pareao at Zurich Workshop in June 2023

Non-Perturbative QFT for Precision Predictions

$a_{\mu}^{H V P}$ Data driven vs. Lattice QCD
Data from SM White Paper Phys.Rept. 887 (2020)

SM contrib.	$\mathbf{a}_{\mu}^{\text {contrib. }} \times \mathbf{1 0}^{10}$	
HVP-LO $\left(e^{+} e^{-}\right)$	693.1	± 4.0
HVP-NLO $\left(e^{+} e^{-}\right)$	-9.83	± 0.07
HVP-NNLO $\left(e^{+} e^{-}\right)$	1.24	± 0.01
HLbL-LO (pheno)	9.2	± 1.9
HLbL (lattice usd $)$	7.8	± 3.4
HLbL (pheno+lattice)	9.0	± 1.7
HLbL-NLO (pheno)	0.2	± 0.1
QED (5 loops)	11658471.8931	± 0.0104
EW (2 loops)	15.36	± 0.10
HVP ($e^{+} e^{-}$, LO + N(N)LO $)$	684.5	± 4.0
HLbL (pheno + lattice + NLO $)$	9.2	± 1.8
SM Total	11659181.0	± 4.3

Table and diagram by L. Pareao at Zurich Workshop in June 2023

Perturbative QCD is not valid for $\Lambda=m_{\mu} \ll \Lambda_{Q C D}$
\rightarrow Use dispersive approach to include $e^{+} e^{-} \rightarrow$ Hadron data via R-ratio:

$$
a_{\mu, D A}^{L O-H V P}=\frac{\alpha^{2}}{3 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s}{s} K(s) R(s)
$$

Non-Perturbative QFT for Precision Predictions

$a_{\mu}^{H V P}$ Data driven vs. Lattice QCD
Data from SM White Paper Phys.Rept. 887 (2020)

SM contrib.	$\mathbf{a}_{\mu}^{\text {contrib. }} \times \mathbf{1 0}^{10}$	
HVP-LO $\left(e^{+} e^{-}\right)$	693.1	± 4.0
HVP-NLO $\left(e^{+} e^{-}\right)$	-9.83	± 0.07
HVP-NNLO $\left(e^{+} e^{-}\right)$	1.24	± 0.01
HLbL-LO (pheno)	9.2	± 1.9
HLbL (lattice usd $)$	7.8	± 3.4
HLbL (pheno+lattice)	9.0	± 1.7
HLbL-NLO (pheno)	0.2	± 0.1
QED (5 loops)	11658471.8931	± 0.0104
EW (2 loops)	15.36	± 0.10
HVP ($e^{+} e^{-}$, LO + N(N)LO)	684.5	± 4.0
HLbL (pheno + lattice + NLO $)$	9.2	± 1.8
SM Total	11659181.0	± 4.3

Table and diagram by L. Pareao at Zurich Workshop in June 2023

Non-Perturbative QFT for Precision Predictions

$a_{\mu}^{H V P}$ Data driven vs. Lattice QCD
$a_{\mu, D A}^{L O-H V P}=\frac{\alpha^{2}}{3 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s}{s} K(s) R(s) \quad a_{\mu, L Q C D}^{L O-H V P}=2 \alpha^{2} \int_{0}^{\infty} t^{2} \mathrm{~d} t K\left(m_{\mu} t\right) V(t)$

- Time \leftrightarrow Energy Window

$$
a_{\mu, L Q C D}^{L O-H V P, \omega}=2 \alpha^{2} \int_{0}^{\infty} t^{2} \mathrm{~d} t K\left(m_{\mu} t\right) \Theta^{\omega}(t) V(t)
$$

$>\left[0, t_{0}\right] \oplus\left[t_{0}, t_{1}\right] \oplus\left[t_{1},+\infty\right]$ for $\mathrm{SD}, \mathrm{W}, \mathrm{LD}$.
$>$ SD and W precisely predicted by Lattice QCD in continuum.
$>\mathrm{SD}$ and W energy windows with precise $e^{+} e^{-}$EXP data.
$>a_{\mu}^{W}$ (intermediate window) has 3.7σ tension for DA vs. LQCD

Parton Distributions and α_{s}

State-of-the-art Parton Distribution Functions

- Theory input
$>$ Option A: solve proton wave function with Lattice QCD Recent progress in D. Chakrabarti, P. Choudhary et. al. 2304.09908
$>$ Option B: collinear factorisation $f_{a} \rightarrow f_{a}(x, \mu)$ with p-QCD evolution of factorisation scale

$$
\begin{gathered}
\frac{d}{d \ln \mu^{2}}\binom{f_{q}}{f_{g}}=\left(\begin{array}{cc}
P_{q \leftarrow q} & P_{q \leftarrow g} \\
P_{g \leftarrow q} & P_{g \leftarrow g}
\end{array}\right) \otimes\binom{f_{q}}{f_{g}} \\
p_{a \leftarrow b}=\frac{\alpha_{s}}{\pi} P_{a \leftarrow b}^{(0)}+\frac{\alpha_{s}^{2}}{\pi^{2}} P_{a \leftarrow b}^{(1)}+\frac{\alpha_{s}^{3}}{\pi^{3}} P_{a \leftarrow b}^{(2)}+\cdots \\
1970^{\prime} s
\end{gathered}
$$

$\gamma_{q \leftarrow q}^{(3)}(N)=-\int_{0}^{1} \mathrm{~d} x x^{N-1} P_{q \leftarrow q}^{(3)}(x)$ G.Falcioni, F. Herzog et.al. Phys.Lett.B 842 (2023)
$\gamma_{q \leftarrow g}^{(3)}(N)=-\int_{0}^{1} \mathrm{~d} x x^{N-1} P_{q \leftarrow g}^{(3)}(x)$ G. Falcioni, F. Herzog, S. Moch, A. Vogt 2307.04158

- Experiment input
- All past and current measurements of DIS, DY, jets etc. provide fitting targets of $f_{a}(x, Q)$
> Differential and total cross sections provide sensitivity in different regions of $x \in[0,1]$
> Various technology for fitting: functional form, neural network, fast evaluation grids etc.

Parton Distributions and α_{s}

State-of-the-art Parton Distribution Functions

G. Magni (NNPDF) @ Les Houches 23 x region outside 68% c.l. region.

- Missing Higher Order Uncertainty (MHOU) not included in standard NNLO PDF.
> Crucial to consider MHOU and IHOU to understand consistency between NNLO and N3LO PDF.

Parton Distributions and α_{s}

The running strong coupling
$>$ Both non-perturbative and perturbative α_{s} determination depend on the beta-function.

- More and more precision predictions and measurements across 10^{3} magnitude.

Parton Distributions and α_{s}

The running strong coupling

> Both non-perturbative and perturbative α_{s} determination depend on the beta-function.

- More and more precision predictions and measurements across 10^{3} magnitude.
TEEC: $\frac{1}{\sigma} \frac{\mathrm{~d} \Sigma}{\mathrm{~d} \cos \phi} \equiv \frac{1}{N} \sum_{A=1}^{N} \sum_{i j} \frac{E_{\mathrm{T} i}^{A} E_{\mathrm{T} j}^{A}}{\left(\sum_{k} E_{\mathrm{T} k}^{A}\right)^{2}} \delta\left(\cos \phi-\cos \varphi_{i j}\right)$

M. Alvarez, J. Cantero,
M.Czakon, J. Llorente,
A. Mitov, R. Poncelet

JHEP 03 (2023) 129

Parton Distributions and α_{s}

The running strong coupling
$>$ Both non-perturbative and perturbative α_{s} determination depend on the beta-function.

- More and more precision predictions and measurements across 10^{3} magnitude.

Flavour Lattice Averaging Group Eur.Phys.J.C 82 (2022) 10

Parton Distributions and α_{s}

The running strong coupling
$>$ Both non-perturbative and perturbative α_{s} determination depend on the beta-function.

Error budget of ATLAS $Z p_{T} 8 \mathrm{TeV}$

Flavour Lattice Averaging Group Eur.Phys.J.C 82 (2022) 10

Parton Distributions and α_{s}

The running strong coupling
> Both non-perturbative and perturbative α_{s} determination depend on the beta-function

- More and more precision predictions and measurements across 10^{3} magnitude.

Flavour Lattice Averaging Group Eur.Phys.J.C 82 (2022) 10

Error budget of ATLAS $Z p_{T} 8 \mathrm{TeV}$

Experimental uncertainty	+0.00044	-0.00044
PDF uncertainty	+0.00051	-0.00051
Scale variations uncertainties	+0.00042	-0.00042
Matching to fixed order	0	-0.00008
Non-perturbative model	+0.00012	-0.00020
Flavour model	+0.00021	-0.00029
QED ISR	+0.00014	-0.00014
N4LL approximation	+0.00004	-0.00004
Total	+0.00084	-0.00088

Missing: MHOU from aN3LOPDF; Dominant matching error; Systematic slicing error in
DYTurbo and MCFM (double slicing);
\rightarrow Optimistic uncertainty estimation

Parton Distributions and α_{s}

The running strong coupling
$>$ Both non-perturbative and perturbative α_{s}

$$
\sigma=\sum_{i, j} \int \mathrm{~d} x_{1} \mathrm{~d} x_{2} f_{i}\left(x_{1}\right) f_{j}\left(x_{2}\right) \hat{\sigma}(\hat{s}) \times\left[1+\mathcal{O}(\Lambda / Q)^{n}\right]
$$ determination depend on the beta-function.

> More and more precision predictions and measurements across 10^{3} magnitude.

- To understand the NP power correction in collinear factorisation (hadron collider):
$\geqslant \mathrm{n}=2$ for inclusive DY, $\mathrm{n}=1$ for hadronisation
$>$ What about Z/W at large p_{T} ?

$$
\left(\frac{1 \mathrm{GeV}}{30 \mathrm{GeV}}\right)^{\mathrm{n}} \approx 3 \%(0.1 \%) \text { for } \mathrm{n}=1(\mathrm{n}=2)
$$

> MC framework to estimate renormalon corrections: Ferraro Ravasio, Limatola, Nason JHEP 06 (2021) 018

Carla, Ferrario Ravviso, et. al. JHEP 01 (2022) 093, JHEP 12 (2022) 062

$>$ Linear NP corrections in $e^{+} e^{-} \rightarrow 3$ jets ease the tension in α_{s} fitting from C-parameter and thrust.
$>$ Confirm $\mathrm{n}=2$ for p_{T}^{Z} at hadron colliders \rightarrow no need to update α_{s} fitting related to DY data.

CONCLUSION AND OUTLOOK

$>$ Reducing and understanding the Standard Model uncertainties is indispensable for future high energy experiment.
$>$ It is about finding the shortest panel of a bucket rather than boosting the longest.
>Multiple solutions work together to test our understand of the Standard Model: perturbative and non-perturbative QFT, specialised fitting etc.
> There is rapid progress in the complexity of amplitudes, NNLO and N3LO phenomenology, parton shower framework, lattice QCD and machine learning technology etc.
$>$ It is not only to predict a more precise number but to be confronted by conceptual problems that we previously ignored.
[Apologies for the personal selection of topics, and for the many interesting results not covered here]

CONCLUSION AND OUTLOOK

$>$ Reducing and understanding the Standard Model uncertainties is indispensable for future high energy experiment.
$>$ It is about finding the shortest panel of a bucket rather than boosting the longest.
>Multiple solutions work together to test our understand of the Standard Model: perturbative and non-perturbative QFT, specialised fitting etc.

- There is rapid progress in the complexity of amplitudes, NNLO and N3LO phenomenology, parton shower framework, lattice QCD and machine learning technology etc.
$>$ It is not only to predict a more precise number but to be confronted by conceptual problems that we previously ignored.
[Apologies for the personal selection of topics, and for the many interesting results not covered here]

Thank You for Your Attention

BACK UP SLIDES

STATE-OF-THE-ART PREDICTIONS FOR $d \sigma_{N^{3} L O+N^{3(4)} L L}$

FO	α_{s}^{n}	$P_{a b}^{(n)}(x)$	$\ln W\left(x_{a}, x_{b}, m_{V}, \vec{b}, \mu=b_{0} / b\right) \sim$			$\int_{\mu_{h}}^{\mu} d \bar{\mu} / \bar{\mu}$	$\left(A\left(\alpha_{s}(\bar{\mu})\right) r\right.$))	
$\frac{d \hat{\sigma}_{N O O}^{V}}{d q_{T}}$	1		$\ln ^{2}\left(b^{2} m_{V}^{2}\right)$	$\ln \left(b^{2} m_{V}^{2}\right)$	1				
$\frac{d \hat{\sigma}_{N N L}{ }^{\text {cos}}}{d q_{T}}$	2		$\ln ^{3}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{2}\left(b^{2} m_{V}^{2}\right)$	$\ln \left(b^{2} m_{V}^{2}\right)$	1			
$\frac{d \hat{\sigma}_{N^{3} L O}^{V}}{d q_{T}}$	3	\checkmark	$\ln ^{4}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{3}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{2}\left(b^{2} m_{V}^{2}\right)$	$\ln \left(b^{2} m_{V}^{2}\right)$	1		
	4	N	$\ln ^{5}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{4}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{3}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{2}\left(b^{2} m_{V}^{2}\right)$	$\ln \left(b^{2} m_{V}^{2}\right)$	1	
...	
	K		$\ln ^{k+1}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{k}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{k-1}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{k-2}\left(b^{2} m_{V}^{2}\right)$	$\ln ^{k-3}\left(b^{2} m_{V}^{2}\right)$...	
				
	Resum		LL	NLL	NNLL	N3LL	N4LL	...	$\mathrm{N}^{k+1} \mathrm{LL}$
	A		A1	A2	A3	A4	A5	...	A_{k+2}
	B			B1	B2	B3	B4	...	${ }^{B_{k+1}}$

Predictions of Colourless pT at Hadron Collider

$$
p_{T} \text { Spectrum }=\text { multi-scale problem }
$$

>Beyond QCD improved parton model $\geqslant \mathrm{pQCD}$ describes the tail of spectrum
$>$ Large logarithmic divergence

$$
\ln \frac{p_{T}}{Q} \text { as } p_{T} \rightarrow 1 \mathrm{GeV}
$$

> Various LP resummation schemes
-Multiple solutions in transition region
>Non-perturbative effects $\sim 1 \mathrm{GeV}$
(Short distance and long distance effects)

Predictions of Colourless pT at Hadron Collider

$$
p_{T} \text { Spectrum }=\text { multi-scale problem }
$$

-Beyond QCD improved parton model >pQCD describes the tail of spectrum
$>$ Large logarithmic divergence

$$
\ln \frac{p_{T}}{Q} \text { as } p_{T} \rightarrow 1 \mathrm{GeV}
$$

- Various LP resummation schemes
-Multiple solutions in transition region
-Non-perturbative effects $\sim 1 \mathrm{GeV}$
(Short distance and long distance effects)

Anatomy of differential cross sections $d \hat{\sigma}_{a b}$

>State-of-the-art differential N3LO predictions

$>$ Fully differential N3LO Drell-Yan production (via γ^{*}) (XC, T. Gehrmann, N. Glover, A. Huss, T.-Z. Yang, H. X. Zhu 2021)
> Apply qt-slicing at N3LO with SCET factorisation and expand to N3LO:

$$
\begin{aligned}
\frac{d^{3} \sigma}{d Q^{2} d^{2} \vec{q}_{T} d y} & =\int \frac{d^{2} b_{\perp}}{(2 \pi)^{2}} e^{-i q_{\perp} \cdot b_{\perp}} \sum_{q} \sigma_{\mathrm{LO}}^{\gamma^{*}} H_{q \bar{q}}\left[\sum_{k} \int_{x_{1}}^{1} \frac{d z_{1}}{z_{1}} \mathcal{I}_{q k}\left(z_{1}, b_{T}^{2}, \mu\right) f_{k / h_{1}}\left(x_{1} / z_{1}, \mu\right)\right. \\
& \left.\times \sum_{j} \int_{x_{2}}^{1} \frac{d z_{2}}{x_{2}} \mathcal{I}_{\bar{q} j}\left(z_{2}, b_{T}^{2}, \mu\right) f_{j / h_{2}}\left(x_{2} / z_{2}, \mu\right) \mathcal{S}\left(b_{\perp}, \mu\right)+(q \leftrightarrow \bar{q})\right]+\mathcal{O}\left(\frac{q_{T}^{2}}{Q^{2}}\right)
\end{aligned}
$$

- All factorised functions are recently known up to N3LO:

1) 3-loop hard function $H_{q \bar{q}}^{(3)}$ (T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli, C. Studerus 2010)
2) Transverse-momentum-dependent (TMD) soft function $S\left(b_{\perp}, \mu\right)$ at α_{s}^{3} (Y. Li, H.X. Zhu 2016)
3) Matching kernel of TMD beam function $I_{q k}$ at α_{s}^{3} (M.-X. Luo, T.-Z. Yang, H. X. Zhu, Y. J. Zhu 2019, M. A. Ebert, B. Mistlberger, G. Vita 2020)
> Apply qt cut to factorise N3LO contribution into two parts:

$$
\mathrm{d} \sigma_{N^{3} L O}^{\gamma^{*}}=\left.\left[\mathscr{H} \gamma^{*} \otimes \mathrm{~d} \sigma^{\gamma^{*}}\right]_{N^{3} L O}\right|_{\delta\left(p_{T, \gamma^{*}}\right)}+\left[\mathrm{d} \sigma_{N N L O}^{\gamma^{*}+j e t}-\mathrm{d} \sigma_{N^{3} L O}^{\gamma^{*} C T}\right]_{p_{T, \gamma^{*}>} q t_{c u t}}+\mathcal{O}\left(q t_{c u t}^{2} / Q^{2}\right)
$$

$\mathrm{pp} \rightarrow \gamma^{*} / Z @ \mathbf{N}^{3} \mathbf{L O}$

NNPDF4.0 NNLO, $13 \mathrm{TeV}, p p \rightarrow Z / \gamma^{*}\left(\rightarrow \ell^{+} \ell^{-}\right)+X$

XC, T. Gehrmann, N. Glover, et. al. PRL 128, 252001 (2022)

Precision Predictions at Hadron Collider

XC, T. Gehrmann, N. Glover, et. al. PRL 128, 252001 (2022)
DYTurbo result with fiducial power correction

Order	$\mathrm{N}^{3} \mathrm{LO}$
q_{T} subtr. $\left(q_{T}^{\text {cut }}=4 \mathrm{GeV}\right)$	$747.1 \pm 0.7 \mathrm{pb}$
recoil q_{T} subtr.	$745.7 \pm 0.7 \mathrm{pb}$

S. Camarda, L. Cieri, G. Ferrera Eur.Phys.J.C 82 (2022) 6
> Solid horizontal lines: NLO, NNLO at 1 GeV , N3LO at 4 GeV with MC error.
\rightarrow N3LO shows no plateau in 1905.05171

- Pale dots are values used by DYTurbo in 2103.04974 and 2303.12781 (taken from 1905.05171).
- Fiducial power corrections are not included.
> Leads to 30% difference of N3LO coefficients at $q_{T}^{\text {cut }}=4 \mathrm{GeV}$.
>Solid dots are corrected values with fiducial power correction.
> Central value shifts 2 pb starting from NLO (the dominant error).
$> \pm 2.1 \mathrm{pb}$ uncertainty from MC and $q_{T}^{\text {cut }}$ (estimated from [3,5] GeV region).
$>$ Not included in DYTurbo update result with $\pm 0.7 \mathrm{pb}$ uncertainty.
DYTurbo result without fiducial power correction cited in ATLAS α_{s} fitting

Order	NLO	NNLO	$\mathrm{N}^{3} \mathrm{LO}$
$\sigma\left(p p \rightarrow Z / \gamma^{*} \rightarrow l^{+} l^{-}\right)[\mathrm{pb}]$	766.3 ± 1	757.4 ± 2	746.1 ± 2.5
Order	NLL+NLO	NNLL+NNLO	$\mathrm{N}^{3} \mathrm{LL}+\mathrm{N}^{3} \mathrm{LO}$
$\sigma\left(p p \rightarrow Z / \gamma^{*} \rightarrow l^{+} l^{-}\right)[\mathrm{pb}]$	773.7 ± 1	759.8 ± 2	749.6 ± 2.5

S. Camarda, L. Cieri, G. Ferrera Eur.Phys.J.C 82 (2022) 6

Non-Perturbative Q.FT for precision predictions

$a_{\mu}^{H V P}$ Data driven vs. Lattice QCD
$a_{\mu, D A}^{L O-H V P}=\frac{\alpha^{2}}{3 \pi^{3}} \int_{m_{\pi}^{2}}^{\infty} \frac{\mathrm{d} s}{s} K(s) R(s) \quad a_{\mu, L Q C D}^{L O-H V P}=2 \alpha^{2} \int_{0}^{\infty} t^{2} \mathrm{~d} t K\left(m_{\mu} t\right) V(t)$

- Time \leftrightarrow Energy Window

$$
a_{\mu, L Q C D}^{L O-H V P, \omega}=2 \alpha^{2} \int_{0}^{\infty} t^{2} \mathrm{~d} t K\left(m_{\mu} t\right) \Theta^{\omega}(t) V(t)
$$

$>\left[0, t_{0}\right] \oplus\left[t_{0}, t_{1}\right] \oplus\left[t_{1},+\infty\right]$ for $\mathrm{SD}, \mathrm{W}, \mathrm{LD}$.
$>$ SD and W precisely predicted by Lattice QCD in continuum.
$>$ SD and W energy windows with precise $e^{+} e^{-}$EXP data.
$>a_{\mu}^{W}$ (intermediate window) has 3.7σ tension for DA vs. LQCD

W mass in CDFII measurement

$>d \sigma / d m_{T}^{W}$ two templates with $\Delta m_{W}=100 \mathrm{MeV}$

$$
\Delta m_{W}=100 \mathrm{MeV} \sim 0.5-2 \% \text { change in } d \sigma / d m_{T}^{W} \longrightarrow \Delta m_{W}=10 \mathrm{MeV} \sim 0.1 \% \text { precision in } d \sigma / d m_{T}^{W}
$$

Precision predictions in CDF II

>CDF II use ResBos to generate theory templates

$>$ NLO+NNLL accuracy for W/Z production
Balazs, Brock, Landry, Nadolsky and Yuan`97 to `03
$>$ CSS factorisation and resummation of p_{T} in b space:
$\frac{\mathrm{d} \sigma}{\mathrm{d} Q^{2} \mathrm{~d}^{2} \vec{p}_{T} \mathrm{~d} y \mathrm{~d} \cos \theta \mathrm{~d} \phi}=\sigma_{0} \int \frac{\mathrm{~d}^{2} b}{(2 \pi)^{2}} e^{i \vec{p}_{T} \cdot \vec{b}} e^{-S(b)}$ $\times C \otimes f\left(x_{1}, \mu\right) C \otimes f\left(x_{2}, \mu\right)+Y\left(Q, \vec{p}_{T}, x_{1}, x_{2}, \mu_{R}, \mu_{F}\right)$

$$
\text { Collins, Soper and Sterman ` } 85
$$

$>$ Non-perturbative effects at $\alpha_{s}(\Lambda)$ and large b :
$S(b)=S_{\mathrm{NP}} S_{\text {Pert }}$,
Collins and Soper ` 77

$$
\begin{aligned}
S_{\mathrm{Pert}}(b) & =\int_{C_{1}^{2} /\left(b^{*}\right)^{2}}^{C_{2}^{2} Q^{2}} \frac{\mathrm{~d} \bar{\mu}^{2}}{\bar{\mu}^{2}}\left[\ln \left(\frac{C_{2}^{2} Q^{2}}{\bar{\mu}^{2}}\right) A\left(\bar{\mu}, C_{1}\right)+B\left(\bar{\mu}, C_{1}, C_{2}\right)\right] \\
S_{\mathrm{NP}} & =\left[-g_{1}-g_{2} \ln \left(\frac{Q}{2 Q_{0}}\right)-g_{1} g_{3} \ln \left(100 x_{1} x_{2}\right)\right] b^{2}
\end{aligned}
$$

$S_{N P}$ assumes the BLNY functional form

Use data driven method:

Fix	g1	g2	g3	α_{s}
p_{T}^{Z}	Global fit`03 \end{tabular} & \begin{tabular}{c} CDFII \\ fit \end{tabular} & \begin{tabular}{c} Global fit \\ \(` 03\)	CDFII fit		
p_{T}^{Z} / p_{T}^{W}			Global fit $` 03$	

Global fit by Brock, Landry, Nadolsky and Yuan `03 \(m_{T}^{W} \sim 0.7 \mathrm{MeV}, p_{T}^{l} \sim 2.3 \mathrm{MeV}, p_{T}^{\nu} \sim 0.9 \mathrm{MeV}\) CDF supplementary materials ` 22
-Scale uncertainty of p_{T}^{Z} / p_{T}^{W} by DYQT Bozzi, Catani, Ferrera, de Florian, Grazzini `09 `11 $m_{T}^{W} \sim 3.5 \mathrm{MeV}, p_{T}^{l} \sim 10.1 \mathrm{MeV}, p_{T}^{\nu} \sim 3.9 \mathrm{MeV}$ Not included in final result CDF sm` 22

α_{s} Fitting With NP Corrections

Linear NP corrections in $e^{+} e^{-} \rightarrow 3$ jets ease the tension in α_{s} fitting from C-parameter and thrust.

