Search for new physics in rare hadron decays

INFN Pisa

Matteo Rama

INFN Pisa

on behalf of the LHCb collaboration with results from ATLAS, Belle (II), BES III, CMS, KOTO, LHCb, NA62

17 July 2023

31st Lepton Photon Conference Ν MELBOURNE CONVENTION Ο & EXHIBITION CENTRE Ν 17 - 21 JULY ω

Physics beyond the Standard Model

- SM as an effective theory at low energy
- New degrees of freedom expected above the electroweak scale

$$\mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum \frac{c_n}{\Lambda^{d-4}} \mathcal{O}_n^{(d)}$$

- Two complementary approaches:
 - High-energy frontier: Direct search of non-SM particles above the EW scale
 - High-intensity frontier: Search for deviations of SM predictions in low energy processes ("indirect searches")
- Historically, indirect searches have unveiled new fundamental particles
 - \rightarrow prediction of charm quark (1970) (to explain the $K_S \rightarrow \mu\mu$ rate)
 - → Prediction of 3rd generation of quarks (1973) (to explain CP violation)
 - → Top quark mass > 50 GeV (1987) (from $B^0\overline{B^0}$ mixing)

GIM mechanism to explain $K_s \rightarrow \mu^+\mu^-$ rate

Requirements for indirect searches

• Example of new physics contribution in FCNC process $b \to s\ell^+\ell^-$

observables are altered by new (virtual) particles

$$\mathcal{A}_{i o j} = \mathcal{A}_0 \left[rac{c_{SM}}{M_W^2} + rac{c_{NP}}{\Lambda^2}
ight]$$
 coupling NP scale

- Conditions to optimize the sensitivity to new physics
 - 1. Very large statistics the mass reach scales as $(\int Ldt)^{1/4}$
 - 2. Low systematic uncertainty which implies optimised detectors
 - 3. Precise and reliable SM predictions clean observables (eg LFU ratios), hadronic contributions calculable with small uncertainty (lattice QCD, ...), null tests (LFV,...)
 - 4. Multiple independent measurements ideally, same measurement from different experiments

Main players

LHCb, Belle II, BES III

Dedicated heavy-flavour experiments with wide range of measurements

ATLAS, CMS

General-purpose detectors, suitable for b-physics studies mainly with muons in final states

NA62, KOTO

Dedicated to ultra-rare kaon decays

Environments and datasets

pp collider (ATLAS, CMS, LHCb)

- Crowded event (O(100) tracks). Signal rates limited by trigger efficiency.
- 🙂 Large p → large vertex separation
- $b\bar{b}, c\bar{c}$ production cross sections O(100) μb

e^+e^- collider (B-factories)

- Clean event (~10 tracks) → Easier reconstruction of final states with neutrinos
- \odot Good π^0 , γ and e^{\pm} reconstruction
- \cong $B\overline{B}$, $c\overline{c}$ production cross sections O(1) nb

Complementarity

Number of particles in detector acceptance*

ATLAS/CMS: $3 \times 10^{13} \ b\bar{b}$ pairs

LHCb: $1 \times 10^{12} \ b\overline{b}$ pairs

BES III: $1 \times 10^7 D^0 \overline{D^0}$ pairs

Belle II: $2 \times 10^8 \ B\bar{B}$ pairs (Babar+Belle: $1.2 \times 10^9 \ B\bar{B}$ pairs)

NA62: $4 \times 10^{12} K^+$ decays in fiducial region

KOTO: $6 \times 10^{12} K_L$ flux

^{*} Max number on which the measurements presented in next pages are based on. Trigger/sel efficiencies not included. More data have been collected and are being analysed.

Outline

Main focus on FCNC-mediated decays

Covered in this talk:

•
$$K^+ \to \pi^+ \nu \bar{\nu}, K_L \to \pi^0 \nu \bar{\nu}$$

- $B^+ \rightarrow K^+ \nu \bar{\nu}$
- $D^0 \to \pi^0 \nu \bar{\nu}$
- $B \to X_S \gamma$
- $b \rightarrow sl^+l^-$
- $\eta \rightarrow 4\mu$
- LFV decays
- Future

Related experimental talks:

With more measurements and details

Flavour parallel, <u>Tue 18/7 @ 13:30</u>

Dark Matter parallel, <u>Tue 18/7 @ 15:45</u>

Flavour parallel, Wed 19/7 @ 9:00

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$

- FCNC process, strong GIM and CKM suppression
- Theoretically very clean: short-distance dominated, hadronic matrix element from $BF(K^+ \to \pi^0 e^+ \nu)$

- SM prediction: $BF(K^+ \to \pi^+ \nu \bar{\nu}) = (8.4 \pm 1.0) \cdot 10^{-11}$ Buras et al, JHEP11(2015)033 see also Buras, 2205.01118
- Very sensitive to new physics: O(50%) BF variations in several NP models (Z', leptoquarks, non-MFV MSSM, ...).
- Signal signature: matched kaon and pion tracks + a number of vetoes to reject background events
- Backgrounds: Accidental single $\pi^+ + K^+ \rightarrow \pi^+ \pi^0$, $\mu^+ \nu$, $\pi^+ \pi^- e^+ \nu$, 3π
- Counting experiment in regions of $m_{miss}^2 = (P_{K^+} P_{\pi^+})^2$ vs p_{π^+}

$K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$

2018 data combined with previously-analysed 2016+2017 data

•
$$N_{\pi\nu\bar{\nu}}^{\rm exp} = 10.01 \pm 0.42_{\rm syst} \pm 1.19_{\rm ext}$$
 $N_{\rm background}^{\rm exp} = 7.03_{-0.82}^{+1.05}$ $N_{obs} = 20$

$$BF(K^+ \to \pi^+ \nu \bar{\nu}) = (10.6^{+4.0}_{-3.4} \pm 0.9) \times 10^{-11}$$
 at 68% CL 3.4 σ evidence

Search for $K_L \to \pi^0 \nu \bar{\nu}$

Black: observed; Red: expected bkg

- Theoretically very clean and sensitive to new physics, similarly to $K^+ \to \pi^+ \nu \bar{\nu}$
- SM prediction:

$$BF(K_L \to \pi^0 \nu \bar{\nu}) = (2.94 \pm 0.15) \cdot 10^{-11}$$
Buras, 2205.01118

Using 2016-2018 data:

$$BF(K_L \to \pi^0 \nu \bar{\nu}) < 4.9 \times 10^{-9} \text{ @90\% CL}$$

cf. $BF < 3.0 \times 10^{-9}$ @ 90%CL using 2015 data $_{PRL122(2019)021802}$

Rare decays with missing energy at e^+e^- colliders

Selection of rare decays with missing energy at e^+e^-B -factories

- 100% B mesons produced from $Y(4S) \rightarrow B\bar{B}$
- **p** of Y(4S) is known
- \rightarrow reconstruct B_{tag} to:
 - Infer properties of B_{sig}

VS

 \circ Suppress $B\overline{B}$ and continuum backgrounds

 B_{tag} technique NOT applicable at pp colliders

LHCb

VELO TT

x

T1 T2 T3

0 1 2 3 4 5 6 7 8 9 10 1

z (m)

Many techniques to reconstruct B_{tag}

Efficiency

The measurements in the next three slides are unique at e^+e^- B/charm-factories

Search for $B^+ \to K^+ \nu \bar{\nu}$

• Theoretically clean FCNC transition. Only hadronic uncertainty is from FF.

• SM
$$BF = (4.6 \pm 0.5) \times 10^{-6}$$

Buras et al, JHEP02(2015)184
Blake et al, PPNP(2017)92

- Inclusive B_{tag} reconstruction
- Selection and yield measurement based on BDT vs $p_T(K)$. BDT uses properties of kaon candidate, event topology and B_{tag}

$$BF = (1.9^{+1.3}_{-1.3}^{+0.8}_{-0.7}) \times 10^{-5}$$
 (63 fb⁻¹)
 $BF(B^+ \to K^+ \nu \bar{\nu}) < 4.1 \times 10^{-5}$ @90%CL

→ Sensitivity/lumi 20% better than SL tag from Belle

NB: measurement considered "impossible" at LHCb

Search for $D^0 \to \pi^0 \nu \bar{\nu}$

- $c \to u \nu \bar{\nu}$, analogous to $b \to s \nu \bar{\nu}$. Theoretically very clean, SM BF $\sim 10^{-15}$ (strong GIM and CKM suppression)
- 2.93 fb⁻¹ of $\Psi(3770) \rightarrow D^0 \overline{D^0}$ decays with tagged- $\overline{D^0}$
- Concept analogous to measurement of $B^+ \to K^+ \nu \bar{\nu}$
 - Reconstruct the tag-D to suppress backgrounds
 - NB: hadronic D-tag BF very high, as opposed to B-tag $BF(D^0 \to K\pi + K\pi\pi^0 + K3\pi) \sim 27\%$
 - \circ 1 reconstructed π^0 besides *D*-tag, no other charged tracks
 - Signal signature: unassigned calo energy peaking at 0

$$\mathcal{B}_{\mathrm{sig}} = rac{N_{\mathrm{sig}}}{\mathcal{B}_{\pi^0 o \gamma \gamma} \sum_{lpha} N_{\mathrm{tag}}^{lpha} \epsilon_{\mathrm{tag,sig}}^{lpha} / \epsilon_{\mathrm{tag}}^{lpha}} \quad lpha$$
= tag channel

no signal \to $BF(D^0 \to \pi^0 \nu \bar{\nu}) < 2.1 \times 10^{-4} @90\%CL$

PRD105(2022),L071102

 E_{EMC} = unassigned energy in the calorimeter

First limit for this decay

$B \to X_S \gamma$

- FCNC, theoretically clean, BF sensitive to NP
- E_{γ} spectrum gives insights of mass and ρ of b quark in B meson, used in $|V_{ub}|$ and $|V_{cb}|$ extraction

- X_s inclusive: all final states with net strangeness
- First measurement from Belle II, based on hadronic tag and 189fb⁻¹ $BF(B \to X_S \gamma) = (3.54 \pm 0.78 \pm 0.83) \times 10^{-4}$ $E_{\nu} > 1.8$ GeV

Experimental status [HFLAV, PRD107(2022)052008]

 $^{^2}$ Measurement extrapolated to $E_{\gamma} > 1.6$ GeV

HFLAV average: $(349 \pm 19) \times 10^{-6}$

BELLE2-CONF-PH-2022-018

$B_{s,d} \rightarrow \mu^+ \mu^-$

 FCNC, helicity and CKM suppressed, theoretically very clean, BF sensitive to NP

$$BF(B_S \to \mu\mu)_{SM} = (3.78^{+0.15}_{-0.10}) \times 10^{-9}$$

 $BF(B^0 \to \mu\mu)_{SM} = (1.02^{+0.05}_{-0.03}) \times 10^{-10}$
Buras, 2205.01118
Bobeth et al, PRL112(2014)101801

 ATLAS and CMS key players thanks to muon trigger and large integrated luminosity

$$BF(B_S \to \mu\mu) = (3.21^{+0.96}_{-0.91} ^{+0.49}_{-0.30}) \times 10^{-9}$$
 ATLAS
 $BF(B_S \to \mu\mu) = (3.83^{+0.38}_{-0.36} ^{+0.19}_{-0.16} ^{+0.14}_{-0.13}) \times 10^{-9}$ CMS
 $BF(B_S \to \mu\mu) = (3.09^{+0.46}_{-0.43} ^{+0.15}_{-0.11}) \times 10^{-9}$ LHCb

- 2σ tension washed out following latest LHCb and CMS results
- $BF(B_s \to \mu\mu)$ becoming precision measurement. Still room for 15% NP
- No evidence of $B^0 \to \mu\mu$ yet (UL~ $O(1) \times 10^{-10}$)

Still benchmark channels to search for signs of NP

The $b \rightarrow sl^+l^-$ decays

- Unlike $B_s^0 \to \mu\mu$, there is a hadron in the final state
 - O Multitude of observables complementary to $B \to \mu\mu$ measurement
 - Observables not always as theoretically clean

Branching fractions

$$B \to K^{(*)} \mu^+ \mu^-, B_s \to \phi \mu^+ \mu^-, \Lambda_b \to \Lambda \mu^+ \mu^-$$

Angular analyses

$$B \to K^{(*)} \mu^+ \mu^- \Lambda_h \to \Lambda \mu^+ \mu^-$$

Lepton flavour universality tests

$$B^0 \to K^{(*)0} l^+ l^- \ B^+ \to K^+ l^+ l^-$$

Increasing SM precision

SM $c\bar{c}$ loop affecting the amplitude

$b \rightarrow s\mu^{+}\mu^{-}$ BF

- Data often below SM predictions especially at low q^2 values
- Non-local hadronic uncertainties difficult to estimate → Area of active theory development

$b \rightarrow s \mu^+ \mu^-$ angular analysis

$$B^0 \to K^{*0} \mu^+ \mu^-$$

Decay rate:

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^3(\Gamma + \bar{\Gamma})}{\mathrm{d}\bar{\Omega}} = \frac{9}{32\pi} \left[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_\ell \right.$$

$$- F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_\ell + S_3 \sin^2 \theta_K \sin^2 \theta_\ell \cos 2\phi$$

$$+ S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi$$

$$+ \frac{4}{3} A_\mathrm{FB} \sin^2 \theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi$$

$$+ S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_\ell \sin 2\phi \right]$$

PPNP120(2021)103885

- Angular observables (vs q^2) sensitive to new physics
- Possible to choose parameterisations less sensitive to $B \to K^{*0}$ form factors uncertainties (eg P_5' in the plot)
- Still, dependency on other hadronic uncertainties remains ($c\bar{c}$ loop)

- Tensions of data vs SM in regions around $q^2 = 6 \text{ GeV}^2$
- Ongoing efforts to update the q^2 -binned measurements and to explore additional unbinned methods

$b \to s l^+ l^-$ lepton flavour universality tests $(l = e, \mu)$

- In the SM couplings of gauge bosons to leptons are independent of lepton flavour ("lepton universality")
- Ratios of the form

$$R_{K^{(*)}} := rac{\mathcal{B}(B o K^{(*)} \mu^+ \mu^-)}{\mathcal{B}(B o K^{(*)} e^+ e^-)} \overset{\mathrm{SM}}{\cong} 1$$

in SM are essentially free of QCD uncertainties.

Reliable e.m. 1% uncertainties.

[Bordone et al, <u>EPJC76(2016)440</u> Isidori et al, <u>JHEP12(2020)104</u> Isidori et al, <u>JHEP10(2022)14</u>]

- $R_{K^{(*)}}$ sensitive to contributions beyond SM up to >10% (eg models with Z' or leptoquarks)
- Experimentally convenient to measure:

$$R_{K} = \frac{\mathcal{B}(B^{+} \to K^{+}\mu^{+}\mu^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(\mu^{+}\mu^{-}))} / \frac{\mathcal{B}(B^{+} \to K^{+}e^{+}e^{-})}{\mathcal{B}(B^{+} \to K^{+}J/\psi(e^{+}e^{-}))} = \frac{N_{\mu^{+}\mu^{-}}^{\text{rare}} \varepsilon_{\mu^{+}\mu^{-}}^{J/\psi}}{N_{\mu^{+}\mu^{-}}^{J/\psi} \varepsilon_{\mu^{+}\mu^{-}}^{\text{rare}}} \times \frac{N_{e^{+}e^{-}}^{J/\psi} \varepsilon_{e^{+}e^{-}}^{\text{rare}}}{N_{e^{+}e^{-}}^{J/\psi} \varepsilon_{e^{+}e^{-}}^{\text{rare}}}$$

C. Langenbruch@Recontres de Blois 2023

Measurement of $R_{\kappa^{(*)}}$

- Channel with e^+e^- experimentally much more challenging at LHCb due to brem. γ emission
 - Bremsstrahlung recovery. Worse p resolution. Lower selection efficiency
 - Larger and 'trickier' backgrounds

2212.09152 accepted by PRL 2212.09153 accepted by PRD

- LHCb measurement of R_K and $R_{K^{*0}}$ using the full Run 1+2 dataset
 - Better understanding of mis-identified backgrounds in the e^+e^- channel
 - Added low- q^2 measurement for $R_{K'}$ more data for $R_{K^{*0}}$

Results consistent with SM predictions. Still room for NP effects at 5-10% level

Measurements driven by LHCb, but CMS, ATLAS and Belle II are expected to contribute

 $R_K \text{ low-} q^2 \quad R_K \text{ central-} q^2 \quad R_{K^*} \text{ low-} q^2 \quad R_{K^*} \text{ central-} q^2$

See:

R_K Belle, 711fb⁻¹, JHEP 03 (2021) 105 $BF(B \to K^*l^+l^-)$ Belle II, 189 fb⁻¹, 2206.05946 $R_K(I/\psi)$ Belle II, 189 fb⁻¹, 2207.11275

Interpretation of results

Possible interpretations using effective Hamiltonian approach

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{SM}} - \frac{4G_F}{\sqrt{2}} \frac{e^2}{16\pi^2} \sum_{q=s,d} \sum_{\ell=e,\mu} \sum_{i=9,10,S,P} V_{tb} V_{tq}^* (C_i^{bq\ell\ell} O_i^{bq\ell\ell} + C_i'^{bq\ell\ell} O_i'^{bq\ell\ell}) + \text{h.c.}$$

$$O_9^{bq\ell\ell} = (\bar{q}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \ell), \qquad O_9^{bq\ell\ell} = (\bar{q}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \ell),$$

$$O_{10}^{bq\ell\ell} = (\bar{q}\gamma_\mu P_L b)(\bar{\ell}\gamma^\mu \gamma_5 \ell), \qquad O_{10}'^{bq\ell\ell} = (\bar{q}\gamma_\mu P_R b)(\bar{\ell}\gamma^\mu \gamma_5 \ell),$$

$$O_S^{bq\ell\ell} = m_b(\bar{q}P_R b)(\bar{\ell}\ell), \qquad O_S'^{bq\ell\ell} = m_b(\bar{q}P_L b)(\bar{\ell}\ell),$$

$$O_P^{bq\ell\ell} = m_b(\bar{q}P_L b)(\bar{\ell}\gamma_5 \ell).$$

$$O_D^{bq\ell\ell} = m_b(\bar{q}P_L b)(\bar{\ell}\gamma_5 \ell).$$

- In the example, NP C₉ and C₁₀ of $b \rightarrow s\mu^+\mu^-$ free to vary, SM assumed for $b \rightarrow se^+e^-$
- Useful to test different NP scenarios in mod-indep way, provided that theory uncertainties of input parameters are under control

$b \rightarrow s\tau^+\tau^-$ transitions

- FCNC process involving 3° generation of leptons
- SM BF predictions are $O(10^{-7})$
- At least 2 neutrinos in final state \rightarrow Experimentally much more challenging than $b \rightarrow s l^+ l^-$ with $l = e, \mu$

Babar:
$$BF(B^+ \to K^+ \tau \tau) < 2.25 \times 10^{-3}$$
 @90% CL 424 fb⁻¹ PRL118(2017)031802

Belle:
$$BF(B^0 \to K^{*0}\tau\tau) < 3.1 \times 10^{-3}$$
 @90% CL 711 fb⁻¹

LHCb:
$$BF(B_s^0 \to \tau \tau) < 6.8 \times 10^{-3} @95\% \text{ CL}$$
 Run 1

→ far from SM but close to allowed range in some NP scenarios

Capdevila et al, PRL120(2018)181802

Belle II projections for $K^{*0}\tau\tau$:

$\mathcal{B}(B^0 \to K^{*0}\tau\tau)$ (had tag)				
ab^{-1}	"Baseline" scenario	"Improved" scenario		
1	$< 3.2 \times 10^{-3}$	$< 1.2 \times 10^{-3}$		
5	$< 2.0 \times 10^{-3}$	$< 6.8 \times 10^{-4}$		
10	$< 1.8 \times 10^{-3}$	$< 6.5 \times 10^{-4}$		
50	$< 1.6 \times 10^{-3}$	$< 5.3 \times 10^{-4}$		

Snowmass WP, <u>2207.06307</u>

- Hadronic tag assumed: could Belle II do even better with a more inclusive tag?
- K^{*0} vertex can be powerful in suppressing bkg at LHCb compared to $B_s^0 \to \tau\tau \to$ LHCb can be competitive with Belle II

Observation of $\eta \rightarrow 4\mu$

101 fb⁻¹ (13 TeV)

Background

 v^2 / ndf = 68 / 6

- Decay through e.m. coupling of meson to photons

$$BF(\eta \rightarrow 4\mu)_{SM} = (3.98 \pm 0.15) \times 10^{-9}$$

Escribano, Gonzalez-Solis ChinPhysC42(2018)023109

- Muon p_T threshold of standard CMS trigger too high for $\eta \to 4\mu$
 - → Data scouting technique:

Adapted from S. Mukherjee@LLP 2018

101 fb⁻¹ of 2017,18 data

Estimated $10^{12} \eta$ mesons in det acceptance!

0.5 0.55 0.6 0.65 0.7 0.75 0.8

2305.04904 sub to PRL

 40 = $N_{4\mu}$ = 49.6 \pm 8.1

Candidates / 7 MeV

20

BF measured normalizing w.r.t. $\eta \rightarrow \mu^{+}\mu^{-}$

$$\mathcal{B}(\eta \to 4\mu) = (5.0 \pm 0.8 \, (\mathrm{stat}) \pm 0.7 \, (\mathrm{syst}) \, \pm 0.7 \, (\mathcal{B}_{2\mu})) \times 10^{-9}$$

First observation $> 5\sigma$

Lepton flavour violation in hadron decays

- Lepton flavour violation (LFV) forbidden in the SM, allowed in several NP scenarios (LQ, Z', ...)
- Model parameters constrained already with current datasets

Lepton flavour violation in hadron decays

- Lepton flavour violation (LFV) forbidden in the SM, allowed in several NP scenarios (LQ, Z', ...)
- Model parameters constrained already with current datasets

Near future

- 9 fb⁻¹ collected in Run 1+2
- Taking data with upgraded det
- Expected $L_{peak} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- ~23 fb⁻¹ by end of 2025 (x3 stat)

- Current measurements use up to 190 fb⁻¹
- ... but collected 370 fb⁻¹ @ Y(4S)
- $L_{peak} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 3 ab⁻¹ in 2025, ~7ab⁻¹ in 2027

Baudot@FPCP23

- \sqrt{s} =2-4 GeV, $L_{peak} = 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Running at $\Psi(3770)$, plan to collect 20 fb⁻¹
- Operate BESIII into 2030's after machine upgrade

- Collected 140fb⁻¹ (each) in Run 2
- Run3: $L_{peak} = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 450 fb⁻¹ by LS3 in 2026

- Ongoing Run 2 data taking, upgraded det to reduce backgrounds
- Expected $BF(K^+ \to \pi^+ \nu \bar{\nu})$ 15% precision by end 2025

- Ongoing analysis of 2021 data with SES~8 \times 10^{-10} similar to 2016-18
- SES $< 10^{-10}$ in 3-4 years

Y. B. Hsiung @FPCP23

Farther future

- 9 fb⁻¹ collected in Run 1+2
- Taking data with upgraded det
- Expected $L_{peak} = 2 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- ~23 fb⁻¹ by end of 2025 (x3 stat)

- Current measurements use up to 190 fb⁻¹
- ... but collected 370 fb⁻¹ @ Y(4S)
- $L_{peak} = 4.7 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 3 ab⁻¹ in 2025, ~7ab⁻¹ in 2027

Baudot@FPCP23

- \sqrt{s} =2-4 GeV, $L_{peak} = 1 \times 10^{33} \text{ cm}^{-2} \text{s}^{-1}$
- Running at $\Psi(3770)$, plan to collect 20 fb⁻¹
- Operate BESIII into 2030's after machine upgrade

- Collected 140fb⁻¹ (each) in Run 2

- Run3: $L_{peak} = 2 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 450 fb⁻¹ by LS3 in 2026

- Ongoing Run 2 data taking, upgraded det to reduce backgrounds
- Expected $BF(K^+ \to \pi^+ \nu \bar{\nu})$ 15% precision by end 2025

- Ongoing analysis of 2021 data with SES~ 8×10^{-10} similar to 2016-18
- SES $< 10^{-10}$ in 3-4 years

Y. B. Hsiuna @FPCP23

Upgrade 1b + II

- 50 fb⁻¹ by end of Run 4 (2032)
- Then, upgrade II phase:
 - $_{\odot} L_{peak} = 1.5 \times 10^{34} \, \text{cm}^{-2} \text{s}^{-1}$
 - o 300 fb⁻¹ after Run 5+6 (till end of LHC operation)
 - Ongoing approval process

Framework TDR

- $L_{peak} = 6.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1}$ after IR upgrade
- 20-30 ab⁻¹ early 2030's, 50ab⁻¹ mid 2030

Snowmass WP 2203.11349

• Chinese proposal CDR 2303.15790 $0.05 = 2-7 \text{ GeV}, L_{peak} \ge 0.5 \times 10^{35} \text{ cm}^{-2} \text{s}^{-1} \ \text{@ 4 GeV}$ ∘ 1 ab⁻¹ per year

• Starting in 2029 till end of LHC operations

Russian proposal with similar features

PAN 83(2020)944

- $L_{peak} = 5 \div 7.5 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$
- 3000 fb⁻¹ (each) and beyond

- Proposed K^+ , K_L program at CERN SPS after 2025
- Phase 1: $BF(K^+ \to \pi^+ \nu \bar{\nu})$ 5% precision
- Phase 2: $BF(K_I \to \pi^0 \nu \bar{\nu})$ 20% precision

Lol 2211.16586

- Aim at $BF(K_L \to \pi^0 \nu \bar{\nu})$ 20% precision
- Start in 2030's

2110.04462

Summary

- In the search for physics beyond the Standard Model, rare decays of hadrons are one of the key tools
- Joint effort of many experiments operating under different experimental conditions
- Some tensions with SM predictions in a few measurements, but not clear conclusions
 - Importance of having reliable theoretical SM predictions. Great ongoing effort from the theoretical community.
 - Desirable that a measurement can be replicated by independent experiments. In general, good overlap.
- All main players have approved data-taking programs which will allow to significantly increase the datasets in the next 2-3 years
- Exciting next-gen projects, approved or under discussion, aim at further increasing the datasets by order
 of magnitudes in a time scale of 10-15 years

BACKUP

Rare decays as tool to constrain the Dark sector

- Search for $X \to "visible"$ or $X \to "invisible"$ through the decay $A \to B X$, with A and B reconstructed SM particles
- Example: set UL on $X \rightarrow "visible"$ through $K^+ \rightarrow \pi^+ X$ at NA62
 - O Assumption: X is dark-sector scalar mixing with SM Higgs (coupling = $\sin \theta$), with $\tau_X \propto 1/\sin \theta$.
 - o From the UL, which depends on τ_X through correlation with signal efficiency, the bound on $\sin \theta m_X$ is extended

• Assuming $X \to '' invisible''$ in $K^+ \to \pi^+ X$, UL vs m_X is set NB: SM $K^+\pi^+\nu\bar{\nu}$ is main background in this case!

The NA62 experiment

Nominal Intensity

Incoming K^+ , 75 GeV/c, 1% rms

Outgoing π^+

γ/multitrack veto (LAV, LKr, IRC, SAC, HASC)

Particle ID (RICH, LKr, MUV1,2,3)

 33×10^{11} ppp on T10

Timing by KTAG ($\sigma_t \sim 70$ ps); measured by GTK; rate at GTK ~ 600 MHz

Timing by RICH ($\sigma_t \sim 70$ ps); measured by STRAW; rate at Straw ~ 5 MHz

 $\pi^0 \rightarrow \gamma \gamma$ suppression

 μ^+ suppression

NA62 data taking periods

		Beam intensity	Spills ($\times 10^3$)	
	2025		approved	
	2024		approved	
"RUN2"	2023	on - going	on - going	
	2022	nominal	400	
	2021	~ nominal	140 Beam problems	

Long Shutdown 2

2018	0(65)% nominal	500	
2017	0(55)% nominal	300	
2016	0(40)% nominal	80	Commissioning

The KOTO detector

 $K_L \rightarrow \gamma \gamma$ with K_L off the beam axis

on downstream collimator

 $K^+ \to \pi^0 e^+ \nu$ with K^+ from K_L collision

Photon veto counters

Charged-particle veto counters (plastic detectors)

TABLE II. Summary of the numbers of background events with a central value estimate.

Source		Number of events
$\overline{K_L}$	$K_L \rightarrow 3\pi^0$	0.01 ± 0.01
	$K_L \rightarrow 2\gamma$ (beam halo)	0.26 ± 0.07^{a}
	Other K_L decays	0.005 ± 0.005
K^{\pm}		0.87 ± 0.25^{a}
Neutron	Hadron cluster	0.017 ± 0.002
	$CV \eta$	0.03 ± 0.01
	Upstream π^0	0.03 ± 0.03
Total	•	1.22 ± 0.26

^aBackground sources studied after looking inside the blind region.

PRL 126(2021),121801

- New charged-particle veto counter under preparation to suppress K^+ background
- New sweeping magnet at the detector entrance

Planned actions to increase bkg suppression

More complex analysis of photon clusters to reduce $K_L \rightarrow \gamma \gamma$

Belle II detector

Belle II projections for $B^{(*)} \to K^{(*)} \nu \bar{\nu}$ decays

Snowmass White Paper, 2207.06307

Table 3: Baseline (improved) expectations for the uncertainties on the signal strength μ (relative to the SM strength) for the four decay modes as functions of data set size.

Decay	$1\mathrm{ab}^{-1}$	$5\mathrm{ab}^{-1}$	$10{\rm ab}^{-1}$	$50\mathrm{ab}^{-1}$
$B^+ \to K^+ \nu \bar{\nu}$	0.55(0.37)	0.28(0.19)	0.21 (0.14)	0.11 (0.08)
$B^0 \to K_{\rm S}^0 \nu \bar{\nu}$	2.06(1.37)	1.31(0.87)	1.05(0.70)	0.59(0.40)
$B^+ \to K^{*+} \nu \bar{\nu}$	2.04(1.45)	1.06(0.75)	0.83(0.59)	0.53(0.38)
$B^0 \to K^{*0} \nu \bar{\nu}$	1.08(0.72)	0.60(0.40)	0.49(0.33)	0.34(0.23)

Baseline scenario: current performance

Improved scenario: assumes 50% signal increase efficiency for same background level

 $B^+ \to K^+ \nu \bar{\nu}$ analysis sensitive to the SM rate at 3(5) sigma with 5ab⁻¹ in the baseline (improved) scenario.

Belle II projections for $B \to X_S \gamma$, hadronic tag

Snowmass White Paper, 2207.06307

Lower E_{γ}^{B} threshold	Statistical uncertainty			Baseline (improved)	
	1 ab^{-1}	5 ab^{-1}	10 ab^{-1}	50 ab^{-1}	syst. uncertainty
$1.4~\mathrm{GeV}$	10.7%	6.4%	4.7%	2.2%	$10.3\% \ (5.2\%)$
$1.6 \mathrm{GeV}$	9.9%	6.1%	4.5%	2.1%	8.5% (4.2%)
$1.8 \mathrm{GeV}$	9.3%	5.7%	4.2%	2.0%	6.5% (3.2%)
$2.0 \mathrm{GeV}$	8.3%	5.1%	3.8%	1.7%	$3.7\% \ (1.8\%)$

Systematic uncertainty driven by knowledge of background Baseline scenario: background known at 10% level (current Belle II performance) Improved scenario: background known at 5% level (based on ongoing studies of improved π^0 veto)

BEPCII and BESIII detector

Beijing Electron Positron Collider II

Beam energy: 1.0 - 2.45 GeV Luminosity: 1×10³³ cm⁻²s⁻¹ Optimum energy: 1.89 GeV Energy spread: 5.16 × 10-4 No. of bunches: 93

BESIII Detector

BES III data samples

M. Pelizäus @ Hadron2023

Electrons vs muons at LHCb

• Electrons lose a large fraction of their energy through Bremsstrahlung in detector material

- Most electrons will emit one energetic photon before the magnet.
 - → Look for photon clusters in the calorimeter compatible with electron direction before the magnet.
 - → Recover brem energy loss by "adding" the cluster energy back to the electron momentum.

$R_{K^{(*)}}$ vs PID selection without modeling of misID bkg

2212.09153 accepted by PRD

Observation of $\eta \rightarrow 4\mu$

Selected $\eta \rightarrow \mu\mu$ sample

$$rac{\mathcal{B}_{4\mu}}{\mathcal{B}_{2\mu}} = rac{N_{4\mu}}{\sum\limits_{i,j} N_{2\mu}^{i,j} rac{A_{4\mu}^{i,j}}{A_{2\mu}^{i,j}}}$$

i, j are regions of p_T and rapidity (32 regions p_T , 2 regions |y|)

Predicted background contributions estimated with MC, normalized to 101 fb⁻¹

LHCb upgrade II

- Expression of Interest (2017), Physics case (2018, Framework TDR (2022)
- To be complemented with more detail plans with scoping scenarios manpower and funds
- Target Scoping document end of 2024

Archilli, Altmannshofer, 2206.11331

