

Operation, Challenges and Future Prospects of SuperKEKB

Tetsuo ABE

(KEK/ACCL)

on behalf of SuperKEKB commissioning group

31st International Symposium on Lepton Photon Interactions at High Energies (Lepton Photon 2023)

2023-07-20

SuperKEKB Accelerator

~ Asymmetric-energy e+e- collider ~

- Upgraded from KEKB B-factory (KEKB)
- Stored-beam energies
 - <u>High Energy Ring (HER)</u>: 7.0 GeV (e-)
 - <u>Low Energy Ring (LER)</u>: 4.0 GeV (e+)
- $\blacksquare E_{\rm cms} \approx M_{\Upsilon(4S)}$
- Stored-beam currents (design)
 - HER: 2.6 A
 - LER: 3.6 A
- Positron damping ring newly constructed
- Final target luminosity: 6.0×10^{35} cm⁻²·s⁻¹
 - Higher beam currents than those at KEKB
 - ullet Squeezing $eta_{\mathcal{V}}^*$ with the nano-beam collision scheme
- Goal: 50-fold more integrated luminosity than recorded in KEKB

History of the SuperKEKB Project

The 1st Long Shutdown (LS1) (Jun., 2022 – Dec., 2023)

- ➤ Belle II: additional installation and replacement of subcomponents, etc.
- SuperKEKB: many various modifications and improvements

Phase 3 (Since Mar., 2019)

> Physics run with the fully-installed Belle II and IR.

Phase 2 (Mar. to Jul., 2018)

- ➤ Belle II w/o the beam-sensitive vertex detectors (PXD nor SVD)
- > Super-conducting final focus magnets installed in the IR
- Demonstration of the nano-beam collision scheme at SuperKEKB
- > Beam background study for the nano-beam collision scheme

(PXD: Pixel vertex detector)
(SVD: Silicon vertex detector)

Phase 1 (Feb. to Jun., 2016)

- W/o the Belle II detector nor final focus magnets in the IR (no collision)
- Vacuum scrubbing
- Low emittance beam tuning
- Beam background study for the Belle II detector installation

(IR: Interaction Region)

Flat beam bunch

Hourglass Effect and Nano-Beam Collision Scheme

Too small β_{ν}^* (too strong final focus) makes colliding bunches hourglass-shaped in the crossing region.

 \rightarrow Luminosity (\mathcal{L}) decreased by the geometrical loss

To avoid the hourglass effect

Operational $\beta_{v}^{*} > \sigma_{z} \approx 6 \text{ mm}$

(roughly)

SuperKEKB IP with the nano-beam scheme

- ✓ Long, slender, and flat bunches
 - Longitudinal: ~6 mm
 - Horizontal: ~10 μm
 - Vertical: ~50 nm
- ✓ Large crossing angle: ~5 deg
- ✓ Small crossing region
- ✓ The Hourglass effect is small.

Operational $eta_y^* > rac{\sigma_x^*}{\phi} pprox \mathbf{0.3 mm}$

Crab waist scheme successfully applied

Not only the geometric luminosity loss but also the beam-beam resonances can be suppressed.

The 2nd application to SuperKEKB

 $\boldsymbol{\beta}_{v}^{*}$ successfully squeezed < (Bunch length \approx 6 mm)

1000

500

 $\beta_y^* = 3mm$

Operation History in Phase 3

 $\beta_y^* = 1mm$

 $\beta_y^* = 0.8mm$

 $\beta_y^* = 2mm$

Crab Waist

The smallest β_{v}^{*} and beam size in the world among the colliders

 $\beta_{\nu}^* = 0.8mm \Leftrightarrow$

Design of SuperKEKB: 2.6 A

Record in KEKB: 1.4 A

1460 mA

Design of SuperKEKB: 3.6 A

Record in KEKB: 2.0 A

4.65 x 10³⁴ cm⁻²s⁻¹

 $(4.71 \times 10^{34} \text{ cm}^{-2}\text{s}^{-1})$

Updating the world record!

1st Long shutdown (LS1)

424 fb⁻¹ / 491 fb⁻¹

3

Machine Parameters at the Highest Luminosity Record (...): final design parameter

indefinite i didiffecers at the infinest Editiniosity Necola (). illiard						
	LER	HER				
Beam Energy	4.0 (4.0)	7.0 (7.0)	GeV			
Circumference	3016 (3016)		m			
Crossing angle	83	mrad				
Crab waist ratio	80	40	%			
Beam current @Maximum Luminosity	1.321 (3.6)	1.099 (2.6)	Α			
Number of bunches	2249					
	(2500 with o					
Bunch current @Maximum Luminosity	0.5873 (1.44)	0.4887 (1.04)	mA			
Total RF voltage V _c	9.12 (9.4)	14.2 (15.0)	MV			
Synchrotron tune v_s	-0.0233 (-0.0245)	-0.0258 (-0.0280)				
Bunch length σ_{z}	5.69 (6.0)	6.03 (5.0)	mm			
Momentum compaction $lpha_{ m c}$	2.98E-4 (3.20E-4)	4.54E-4 (4.55E-4)				
Betatron tune v_x / v_y	44.524/46.592	45.532/43.575				
	(44.53/46.57)	(45.53/43.57)				
Beta function at IP β_x^* / β_y^*	80/1 (32/0.27)	60/1 (25/0.30)	mm			
Measured vertical beam size (XRM) @IP $\sigma_{_{\! y}}^{^{\ *}}$	0.224 (0.048)	0.224 (0.062)	μm			
Vertical beam-beam parameters ξ_{y}	0.0407 (0.0881)	0.0279 (0.0807)				
Beam lifetime	8	24	min.			
Luminosity (Belle 2 CsI)	4.6	4.65 (60)				

Overview for Luminosity Improvements

Higher beam currents requires:

- ➤ Higher bunch currents (max. # of bunches, 2345, with two abort gaps already achieved)
- Suppressing the Transverse Mode Coupling Instability (TMCI) because of the narrow physical aperture of the vertical beam collimators
- > Overcoming an obstacle of "Sudden Beam Losse"
- > Better beam injection to compensate shorter stored-beam lifetimes
- > etc.

Smart direction

Squeezing the beta function at the IP (β_{ν}^{*}) requires:

- > Better beam injection to compensate shorter stored-beam lifetimes
- > More sophisticated tunings of collision, luminosity, collimators, etc.
- > etc.

Basis

(IP: Interaction Point)

Better beam injection requires:

- ➤ Higher bunch charges and lower emittances in Linac
- ➤ Emittance preservation in BT_(Linac → MR)
- ➤ More sophisticated beam-orbit and injection tunings
- ➤ Wider dynamic apertures in MR during collision
- > etc.

(BT: Beam Transport line)

(MR: Main Ring)

<u>Transverse Mode Coupling Instability (TMCI)</u>

= Strong head-tail instability (first observed at DESY/PETRA, 1985)

■ Sets a severe bunch current limit for the LER (e+) due to the narrow aperture ($d \approx 1 \text{ mm}$ at min.) of the movable vertical beam collimators.

• (Bunch current threshold of TMCI) =
$$\frac{C_1 f_S E/e}{\sum_i \beta_{v,i} k_{v,i} (\sigma_z, d)} \quad (C_1 \approx 8, f_s \approx 2 \text{kHz}, E/e = 4 \text{ GeV})$$

Vertical movable collimator

Phys. Rev. Accel. Beams 23, 053501 (2020)

- Observation of the vertical impedance with a tune shift
 - Vertical tune shift: $\frac{\Delta v_y}{I_h} = -\frac{T_0}{4\pi E/e} \sum_i \beta_{y,i} k_{y,i}(d)$
 - The vertical collimators have ~70% of the total impedance.
- Temporarily using carbon collimator heads with a high imp.,
 → TMCI was observed at SuperKEKB LER (e+).
- Roughly, $d \propto \beta_{\nu}^*$
- TMCI will limit the bunch currents in the near future.

Introduction of a Non-Linear Collimator (NLC)

Installing a Non-Linear Collimator (NLC) during LS1

To make the collimator aperture wider, resulting in the lower transverse impedance

The installation of the collimator for the NLC system almost completed

As of 2023-07-13 at SuperKEKB / OHO straight section

Phys. Rev. Accel. Beams 23, 053501 (2020)

A pair of skew sextupole magnets and additional radiation shields will be installed after this summer.

Better beam injection

- SuperKEKB injection scheme
 - Injector Linac provides e- and e+ beams to MR.
 - Synchronization between Linac and MR → 1-bunch or 2-bunch (per RF pulse) injection
 - Top-up injection achieved for e- and e+ beams at 50 Hz max.

- ullet Depending on not only $eta_{\mathcal{V}}^*$, but also bunch currents, machine tuning, collimator setting, etc.
- Typical values of the injection efficiencies with $\beta_{\nu}^* = 1 \text{ mm}$: ~50% (LER), ~40% (HER)
- \blacksquare We tried squeezing $eta_{\mathcal{V}}^*$ down to 0.8 mm twice, and in both cases, the injection limited the luminosity.

Better beam injection is needed to further squeeze $oldsymbol{eta}_{v}^{*}$ for higher luminosities

Bunch Charge Histories in Linac and Beam Transport line

(Plots made by Masanori SATOH)

- ✓ We have achieved the bunch charges for the next luminosity milestone.
- ✓ We are approaching the design bunch charge.

Measured Normalized Emittances in Linac and Beam Transport Line

- ✓ The design emittances of e+ and e- are mostly achieved in the Linac.
- ✓ The emittances significantly grow at the end of the beam transport line.
 - Beyond the acceptance of MR
 - Partially reproduced by the simulation of the Coherent/Incoherent Synchrotron Radiation (CSR/ISR)
 - Full understanding needed

More sophisticated beam tuning

Example: Maximization of the e+ generation using a machine-learning technology based on Bayesian optimization for SuperKEKB

Study II: 4 free parameters

- First, intendedly reduce the current of PX/Y_R0_61 and PX/Y_R0_63 by
 -1 A from the preset optimal values and accordingly reduce the e+ yields (4.8 nC → 0 nC)
 Then try to recover the e+ yields by four parameters simultaneously
 - Then, try to recover the e+ yields by four parameters simultaneously tuning the current of PX/Y_R0_61 and PX/Y_R0_63
- The charge of the BPM **SP_16_5_1** downstream of the e+ conversion obtains e+ yield.
- Search the optimal pulse steering currents at a relatively tiny range
 [-3 A, 1 A], although the soft limit is wider [-20 A, 20 A]
- We did the machine study on 20 Dec. 2022, 15:30-.

To be applied to tunings of

- ➤ Beam injection (~6 parameters)
- Collision and luminosity (~10 parameters)

(Gaku MITSUKA)

~10 mins to reach the max. (~30–60 mins by human experts)

• Data points spread across the bound area compared with LCB.

15

Example of serious damages due to SBL

Vertical collimator for LER just upstream the IP (D02V1)

Phys. Rev. Accel. Beams 23, 053501 (2020)

Cf. An undamaged head (W)

A lot of rubble of the Ta heads strewn

Damaged heads (Ta)

(Photos courtesy of Shinji TERUI)

BOTTOM side e+ beam

- The impedance 个
- More difficult to suppress beam backgrounds at Belle II

SBL occurrence seems to have a (quasi)-threshold in the bunch current: ~0.7 mA/bunch.

It was difficult to increase the bunch current beyond ~0.7 mA/bunch.

Investigation of the cause of SBL

■ Machine performance failure?

All of the relevant components are carefully monitored, and no suspicious one found

■ Vacuum arc at RF contacts in vacuum components?

- In this case
 - ➤ Any beam-phase change (= energy loss) should be observed in ~ms time scale.
- SBL occurred in ~10µs time scale, and no beam-phase change observed

■ Dust-beam interaction?

- In this case,
 - > Vacuum pressure bursts and ~ms-time-scale beam loss should be observed.
- SBL occurred in ~10µs time scale mostly with no pressure burst

■ Electron cloud?

- In this case, SBL should occur only in LER (e+), but SBL also occurred in HER (e-).
- Relevant simulation studies are on-going, and no clear relationship with SBL found so far

■ "Fireball"?

"Fireball"-triggered vacuum breakdown observed in normal-conducting UHF RF cavities

End plate of the RF cavity during high-power operation

A fireball caused cavity breakdown.

Upstream Downstream Side view end plate end plate $t = -0.004 \,\mathrm{s}$

509 MHz cavity with a cavity gap voltage: 0.88 MV (= accelerating gradient: 3.4 MV/m)

Recorded by Tetsuo ABE (KEK)

For more details, please take a look at:

- KEK Accl. Lab. Topics (Web article)
 - T. Abe, "Minuscule Gremlins Cause Vacuum Breakdown in Radio-Frequency Accelerating Cavities"

https://www2.kek.jp/accl/eng/topics/topics190122.html

- Original paper

T. Abe, et al., "Direct Observation of Breakdown Trigger Seeds in a Normal-Conducting RF Accelerating Cavity", Physical Review Accelerators and Beams 21, 122002, 2018.

"Fireball" can be a cause of SBL?

"Fireball hypothesis"

→ Fireball

2 The fireball touches some metal surface with a low sublimation point (e.g. copper).

Order of ~ms or longer

3 Plasma is generated around the fireball with high RF fields applied.

Leading to a macroscopic vacuum arc, and possibly significant interactions with the beam particles.

Order of ~µs or shorter

Relevant simulations and experiments on-going!

High-power RF-cavity test stand (MR-D1-AT)

To measure fundamental parameters in the fireball hypothesis

Modifications and improvements during LS1

- Nonlinear vertical collimator (LER)
 - Reduction of impedance and backgrounds
- IR radiation shield improvements
 - Reduction of backgrounds
- (3) Robust horizontal collimator head (LER)
 - Replace by carbon heads for the horizontal collimator against mis firing of the injection kicker
- Copper-coated vertical collimator head
 - Reduction of impedance
 - Possible countermeasure for "fireball"
- New beam pipe at the HER injection point with a wider aperture and more precise BPMs
- RF cavity replacement for LER
 - Stable operation and larger beam current
- (7) etc.

Summary

- SuperKEKB has achieved and been updating world records in the luminosity and vertical emittance / beam size among the colliders.
 - Luminosity record: $4.65 \times 10^{34} \text{cm}^{-2} \text{s}^{-1}$
 - Integrated so far: 424 fb^{-1} (at SuperKEKB)
- The progress in the luminosity improvement is very slow, despite the expectations, due to the various obstacles; especially serious are:
 - Sudden Beam Loss in MR
 - The biggest obstacle in increasing the beam (bunch) currents
 - > The fireball hypothesis being studied theoretically and experimentally
 - Poor injection efficiency
 - \triangleright Without solving this problem, difficult to squeeze β_{ν}^* or increasing the beam (bunch) currents
 - Emittance blowup at the end of the beam transport line (BT) to be fully understood and suppressed
 - Most likely cause is CSR and ISR, but only partially reproduced by the current simulation
 - More advanced models to be implemented in the simulation.
 - Other possibilities being investigated
 - ➤ Wider MR dynamic apertures during collision needed
- There are many other problems and challenges:
 - **Linac**: 2nd bunch orbit stabilization, influence of the ambient temperature change on RF phase, etc.
 - Injection: auto tuning, better optics matching between BT and MR, new BT line, etc.
 - MR: auto luminosity / collimator tunings, tot. beam current dependent optics deformation, better beambeam performance, etc.
- During LS1, many modifications and improvements have been done.

Future Prospects

The first milestone after LS1 is 10³⁵ cm⁻²s⁻¹.

(Shown in IPAC'23 by Yukiyoshi OHNISHI)

■ The performance target after LS1

- Luminosity: $(1.0, 2.4) \times 10^{35} \text{cm}^{-2} \text{s}^{-1}$
- \bullet To be integrated for 10 years: 15 ab⁻¹
- Depending on how the obstacles will be overcome

Parameters	LER	HER	LER	HER
I (A)	2.08	1.48	2.75	2.20
n_b	2345		2345	
I_b (mA)	0.89	0.63	1.17	0.938
β_{ν}^{*} (mm)	0.8		0.6	
ξy	0.0444	0.0356	0.0604	0.0431
ε_{v} (pm)	30		21	
$\Sigma_{v}^{*}(\mu m)$	0.218		0.160	
σ_z (mm)	6.49	6.35	7.23	7.05
$L (cm^{-2}s^{-1})$	10)35	2.4×	10^{35}

■ Discussion just started for further luminosity improvements beyond the above target

- LS2 needed with 3 possible scenarios:
 - 1. Moderate scale modification sometime after 2028 (> 1 year shutdown)
 - With the machine-detector interface (MDI) unchanged
 - 2. Larger scale modification, in addition to 1
 - With options of anti-solenoid re-configuration and MDI modification
 - 3. Much larger scale modification in 203X
- Final target luminosity : $6 \times 10^{35} \text{ cm}^{-2} \text{ s}^{-1}$
- \bullet To be integrated by the final end : 50 ab⁻¹
- Depending on results and achievements after LS1

Our efforts will continue!

Backup Slides

Auto tuning with Bayesian optimization

(Gaku MITSUKA)

Posterior distribution of Gaussian process

$$p(y^*|\mathbf{x}^*, D) = \mathcal{N}(\mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{y}, k_{**} - \mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{k}_*)$$

 $k(\mathbf{x}_n, \mathbf{x}_{n'})$: Kernel function

For example, for the Gaussian kernel function,

$$k(x_n, x_{n'}) = \theta_1 \exp\left(-\frac{(x_n - x_{n'})^2}{\theta_2}\right) + \theta_3 \delta(x_n, x_{n'})$$

Hyper parameters Θ change a strength of the kernel function and auto correlation.

 \mathbf{K} : Kernel matrix $K_{nn'} = k(\mathbf{x}_n, \mathbf{x}_{n'})$

y: Measured values

Kernel function k(.,.): gives a correlation (weight) between given x_n and $x_{n'}$

 $\mathbf{k}_*^T \mathbf{K}^{-1} \mathbf{y}$: interpolate the measured y and expect y^* at x^* weighted by kernel functions

RF-Cavity Breakdown Signal A: Fast drop of the accelerating field

Decay time:

- \rightarrow Normal RF-switch OFF \rightarrow Decay time: 8 µs
- ➤ Breakdown candidate → Decay time: ~500 ns

Pickup antenna

FIG. 6: Waveforms of the oscilloscope displayed for a time span of 20 μ s (= 2 μ s/div) when the interlock system was activated. The red dashed curves indicate the envelope of the 508.9-MHz pickup signal from DR Cavity No. 2, and the red solid lines indicate its zero level. (a) The RF switch was turned off for a reason related to the klystron. (b) Example of the cavity breakdown events.

 Q_L =13000@509MHz \Rightarrow Filling time: 8 μ s

RF-Cavity Breakdown Signal B: Current flash (During the high-power test of the RF cavity for the DR) Field emitted e → Impact on the metal surface → X-ray radiation X-ray detector lek Run Ch.2: X-ray (UP) \rightarrow 2 (plastic scintillator + PMT) Ch.3: X-ray (DN) \rightarrow 200 ns Ch.1 : Cav. Refl. → **D** Yellow: Reflection wave Ch.4 : Cav. Pickup → **Huge Current Flow!** Green: Accelerating field RF cavity for the e+ DR

2017

27 Mar

15:03:51

150mV

2.50GS/s

10k points

200ns

B) Layout of LINAC, BT, Injection to MR

(Naoko IIDA)

e+ beam injects into LER via DR:

The injection BG is not affected very much by the condition upstream the DR.

e- beam directly injects into HER:

The injection BG is directly affected by the condition of RF-gun, LINAC, and BT.

BCS: Bunch Compression System

ECS: Energy Compression System

