
Dylan Rankin [UPenn]
Lepton Photon 2023

July 20th, 2023

Machine learning for low-
latency inference

1

Introduction
• Machine learning (ML) is becoming more and more popular

• Availability of CPUs, GPUs, software has accelerated adoption

• What about low-latency (FPGA/ASIC-based) systems?

• (How) can ML inference be run effectively in O(100 ns)?

• Applications

• Future

2

Machine Learning (ML) is Everywhere

3arXiv:1604.01444arXiv:2005.06534 arXiv:1902.09914

ν

Machine Learning is (almost) Everywhere
• Trends in ML towards bigger and more complicated models, more computing

(GPUs)

• → Majority of ML in physics is “off detector”

• System latency limits are  
typically soft (if at all)

• No radiation

• Issues do not impact data  
collection

• Can re-run  
algorithms/workflows

4arXiv:1909.12285

What if…
• What if:

• System latency limits are low?  
()

• High radiation?

• Requires dedicated  
hardware

• FPGAs (or ASICs)

≲ μs

5

What is an FPGA?
• Field-programmable gate array

• Building blocks:

• Multiplier units (DSPs) [arithmetic]

• Look Up Tables (LUTs) [logic]

• Flip-flops (FFs) [registers]

• Block RAMs (BRAMs) [memory]

• Algorithms are wired onto the chip

• Can only use the resources  
on the chip

• Run at high frequency:  
hundreds of MHz,  
O(ns) runtime

6

RAM

RAMDSP
slice

DSP
slice

Xilinx Virtex Ultrascale+ VU13P
12288 Multipliers

1.7M LUTs

3.4M FFs

95 Mb BRAM

What is a Neural Network?

7

⃗x2⃗x1

input layer
layer 2

N1
N2W2,1

⃗x1 =

x1,1
x1,2
x1,3

...
x1,N1

W2,1 =

w(2,1)
1,1 w(2,1)

2,1 w(2,1)
3,1 w(2,1)

N1,1

w(2,1)
1,2 w(2,1)

2,2 w(2,1)
3,2 . . . w(2,1)

N1,2

w(2,1)
1,3 w(2,1)

2,3 w(2,1)
3,3 w(2,1)

N1,3.
w(2,1)

1,N2
w(2,1)

2,N2
w(2,1)

3,N2
w(2,1)

N1,N2

⃗x2 =

b⃗2 =

b2,1

b2,2

b2,3
...

b2,N2

g2(⋅) = g2(b⃗2)W2,1 +⃗x1

What is a Neural Network?

8

Inference on FPGAs

9

Up to >10k parallel operations!
(#Multiplication Units)

Inference on FPGAs

10

Up to >10k parallel operations!
(#Multiplication Units)

11

Inference on FPGAs
Inputs

Outputs

• Each part of network
must be placed on the
FPGA, connected
together

• Cannot implement an
algorithm if there are no
resources left

• hls4ml is a software package for automatically creating implementations of
neural networks for FPGAs and ASICs

• https://fastmachinelearning.org/hls4ml/ [arXiv:1804.06913]

• pip installable

• Supports common layer architectures and model software (keras, tensorflow,
pytorch, ONNX)

• Part of larger Fast Machine Learning collaboration

12

https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/1804.06913.pdf

hls4ml Workflow

13

Many Others

• NNs:

• Boosted Decision Trees (BDTs):

• Entirely non-exhaustive list…

14

arXiv: 2004.03021

arXiv: 2002.02534 arXiv: 2104.03408

ML Size / Complexity
• Regardless of toolkit, limitation of doing low latency ML is FPGA size

• Bigger FPGA → more resources → more computation

• Pruning and quantization are ways to reduce resources

• Challenge is maintaining performance

15

Xilinx Virtex Ultrascale+ VU13P
12288 Multipliers

1.7M LUTs

3.4M FFs

95 Mb BRAM

• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

Pruning

16

Lλ(w) = L(w) + λ∥w∥

Pruning
• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

17

Lλ(w) = L(w) + λ∥w∥

Pruning
• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

18

Lλ(w) = L(w) + λ∥w∥

Pruning

19

Lλ(w) = L(w) + λ∥w∥

• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

Pruning

20

Lλ(w) = L(w) + λ∥w∥

• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

Pruning

21

Lλ(w) = L(w) + λ∥w∥

• Are all the pieces a given network necessary?

• Many different types of pruning

• Magnitude-based:

• Use regularization (penalty term in loss
function for large weights)

• Remove smallest weights

• Repeat

• Multiplications by 0 can be completely removed
from FPGA design

>70% initial
weights removed

Quantization
• FPGAs are well suited to fixed-point

numbers, not floating point

• Bitwidth can be adjusted as needed
(impacts accuracy, performance,
resources)

• Can be combined with other
customizations

• Quantization-aware training
[arXiv:2006.10159]

• Can greatly reduce size of network by
training with knowledge of quantization

22

https://arxiv.org/pdf/2006.10159.pdf

• FPGAs are well suited to fixed-point
numbers, not floating point

• Bitwidth can be adjusted as needed
(impacts accuracy, performance,
resources)

• Can be combined with other
customizations

• Quantization-aware training
[arXiv:2006.10159]

• Can greatly reduce size of network by
training with knowledge of quantization

Quantization

23

https://arxiv.org/pdf/2006.10159.pdf

Quantization

24

• FPGAs are well suited to fixed-point
numbers, not floating point

• Bitwidth can be adjusted as needed
(impacts accuracy, performance,
resources)

• Can be combined with other
customizations

• Quantization-aware training
[arXiv:2006.10159]

• Can greatly reduce size of network by
training with knowledge of quantization

Worse
performance

https://arxiv.org/pdf/2006.10159.pdf

Quantization

2525

• FPGAs are well suited to fixed-point
numbers, not floating point

• Bitwidth can be adjusted as needed
(impacts accuracy, performance,
resources)

• Can be combined with other
customizations

• Quantization-aware training
[arXiv:2006.10159]

• Can greatly reduce size of network by
training with knowledge of quantization

Better

https://arxiv.org/pdf/2006.10159.pdf

Quantization

26

• FPGAs are well suited to fixed-point
numbers, not floating point

• Bitwidth can be adjusted as needed
(impacts accuracy, performance,
resources)

• Can be combined with other
customizations

• Quantization-aware training
[arXiv:2006.10159]

• Can greatly reduce size of network by
training with knowledge of quantization

https://arxiv.org/pdf/2006.10159.pdf

An Application

27

Large Hadron Collider (LHC)

28

27 km
1011 proton

bunch

1011 proton
bunch

40 MHz
25 ns

LHC Data Processing / Readout

29

LHC Data Processing / Readout

30

Need to make decisions
ultra fast or physics suffers!

Must use FPGAs, enforced
by latency requirement

Di-Higgs Production

31

• HH is best way to measure scalar potential of Higgs field

• Higgs self-coupling: λΗΗΗ

• Major target for CMS and ATLAS experiments

• bbbb, bbWW, bbττ have largest  
branching ratios

• Lots of background that mimics these  
signals → very difficult to record

λΗΗΗ

Particle Identification
• HH → bbbb, bbττ

• Can we design algorithms to
differentiate different collections of
particles / detector signals

• τ lepton, bottom quark

• Light quarks, gluons, noise,
combinatorics

• Can we do it every 25 ns on
FPGAs?

32

τ/b/q/?

Algorithm

τ

b

q

?

L1 τ Identification
• NN algorithm capable of accepting more τ

leptons than traditional cut-based method

• Network is 3 layer dense model, uses
information about particle pT, η, φ, and type

• Outputs decision in 38 ns (9 clocks @ 240
MHz)

33

CMS TDR-021

τ

NN

Cut-based

Calorimeter-only

L1 b-quark Identification

34CMS DP-2022/021

… particles …

b

• NN trained to identify b-quarks using collection of particles

• Architecture includes featurizers that act on each particle individual

• Significantly improved  
acceptance for  
HH→bbbb events  
with low mHH  
(compared to  
traditional cut- 
based methods)

• What if we don’t know exactly what we are looking for?

• ML offers unique solution to this challenge (no traditional alternative)

• Broad field of anomaly detection

Anomaly Detection

35

Fast Anomaly Detection?
• Depending on anomaly, we could have none left in recorded data

• Low-latency ML is the only option!

36

Conclusions
• Increasingly possible to perform

low latency inference of ML
models

• Also low-power, high radiation

• ML offers improved performance
over traditional algorithms

• Potential for better alignment of
offline and online algorithms

• Applications in many fields, areas

37

BACKUP

38

Precision

39

Di-Higgs Decays

40

• Lots of background that mimics these signals → very difficult to record

• Low mHH is most critical, but produced object have lower energy

λHHH at low mHH

Fast Anomaly Detection
• Algorithm could take in relevant objects

in each event

• Low latency is significant limitation on
anomaly detection

• Performance depends on signals

41
arXiv:2107.02157
arXiv:2108.03986

hls4ml Support
• Support for:

• MLPs, BDTs [arXiv:2002.02534], CNNs [arXiv:2101.05108], Binary &
Ternary NNs [arXiv:2003.06308], Quantization-aware training (QKeras)
[arXiv:2006.10159], Modified GarNet architecture (GraphNN)
[arXiv:2008.0360], RNNs/LSTMs/GRUs [arXiv:2207.00559]

• Active maintenance and development

• Many applications for fast ML in physics (low latency, low power)

42

https://arxiv.org/pdf/2002.02534.pdf
https://arxiv.org/pdf/2101.05108.pdf
https://arxiv.org/abs/2003.06308
https://arxiv.org/pdf/2006.10159.pdf
https://arxiv.org/pdf/2008.03601.pdf
https://arxiv.org/abs/2207.00559

Reuse
• For lowest latency,

compute all
multiplications at once

• Reuse = 1 (fully parallel)
→ latency = # layers)

• Larger reuse implies more
serialization

• Allows trading higher
latency for lower resource
usage

43

Layer 1 Layer 2

Applications

44

arXiv: 2111.08590

Eur. Phys. J. C (2021) 81 :969 CMS-DP-2021-035

