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Introduction
• Machine learning (ML) is becoming more and more popular


• Availability of CPUs, GPUs, software has accelerated adoption


• What about low-latency (FPGA/ASIC-based) systems? 


• (How) can ML inference be run effectively in O(100 ns)?


• Applications


• Future
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Machine Learning (ML) is Everywhere
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Machine Learning is (almost) Everywhere
• Trends in ML towards bigger and more complicated models, more computing 

(GPUs)


• → Majority of ML in physics is “off detector” 

• System latency limits are  
typically soft (if at all)


• No radiation


• Issues do not impact data  
collection


• Can re-run  
algorithms/workflows
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What if…
• What if:


• System latency limits are low?  
( ) 

• High radiation?


• Requires dedicated  
hardware


• FPGAs (or ASICs)

≲ μs
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What is an FPGA?
• Field-programmable gate array


• Building blocks:


• Multiplier units (DSPs) [arithmetic] 

• Look Up Tables (LUTs) [logic] 

• Flip-flops (FFs) [registers] 

• Block RAMs (BRAMs) [memory] 

• Algorithms are wired onto the chip


• Can only use the resources  
on the chip


• Run at high frequency:   
hundreds of MHz,  
O(ns) runtime
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Xilinx Virtex Ultrascale+ VU13P 
12288 Multipliers


1.7M LUTs

3.4M FFs


95 Mb BRAM



What is a Neural Network?
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What is a Neural Network?
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Inference on FPGAs
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Up to >10k parallel operations! 
(#Multiplication Units)



Inference on FPGAs
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Up to >10k parallel operations! 
(#Multiplication Units)
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Inference on FPGAs
Inputs

Outputs

• Each part of network 
must be placed on the 
FPGA, connected 
together


• Cannot implement an 
algorithm if there are no 
resources left



• hls4ml is a software package for automatically creating implementations of 
neural networks for FPGAs and ASICs


• https://fastmachinelearning.org/hls4ml/ [arXiv:1804.06913]


• pip installable


• Supports common layer architectures and model software (keras, tensorflow, 
pytorch, ONNX)


• Part of larger Fast Machine Learning collaboration
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https://fastmachinelearning.org/hls4ml/
https://arxiv.org/pdf/1804.06913.pdf


hls4ml Workflow
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Many Others

• NNs:


• Boosted Decision Trees (BDTs):


• Entirely non-exhaustive list…
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arXiv: 2004.03021
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ML Size / Complexity
• Regardless of toolkit, limitation of doing low latency ML is FPGA size


• Bigger FPGA → more resources → more computation


• Pruning and quantization are ways to reduce resources


• Challenge is maintaining performance
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• Are all the pieces a given network necessary?


• Many different types of pruning


• Magnitude-based:


• Use regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• Multiplications by 0 can be completely removed 
from FPGA design

Pruning
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Pruning
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Pruning
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Pruning
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• Are all the pieces a given network necessary?


• Many different types of pruning


• Magnitude-based:


• Use regularization (penalty term in loss 
function for large weights)


• Remove smallest weights


• Repeat


• Multiplications by 0 can be completely removed 
from FPGA design

>70% initial 
weights removed



Quantization
• FPGAs are well suited to fixed-point 

numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization
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Quantization

24

• FPGAs are well suited to fixed-point 
numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization

Worse 
performance

https://arxiv.org/pdf/2006.10159.pdf


Quantization
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• FPGAs are well suited to fixed-point 
numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization

Better

https://arxiv.org/pdf/2006.10159.pdf


Quantization
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• FPGAs are well suited to fixed-point 
numbers, not floating point


• Bitwidth can be adjusted as needed 
(impacts accuracy, performance, 
resources)


• Can be combined with other 
customizations


• Quantization-aware training 
[arXiv:2006.10159]


• Can greatly reduce size of network by 
training with knowledge of quantization

https://arxiv.org/pdf/2006.10159.pdf


An Application
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Large Hadron Collider (LHC)
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27 km
1011 proton 

bunch

1011 proton 
bunch

40 MHz 
25 ns



LHC Data Processing / Readout
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LHC Data Processing / Readout
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Need to make decisions 
ultra fast or physics suffers!

Must use FPGAs, enforced 
by latency requirement



Di-Higgs Production
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• HH is best way to measure scalar potential of Higgs field


• Higgs self-coupling: λΗΗΗ


• Major target for CMS and ATLAS experiments 


• bbbb, bbWW, bbττ have largest  
branching ratios


• Lots of background that mimics these  
signals → very difficult to record

λΗΗΗ



Particle Identification
• HH → bbbb, bbττ


• Can we design algorithms to 
differentiate different collections of 
particles / detector signals


• τ lepton, bottom quark


• Light quarks, gluons, noise, 
combinatorics


• Can we do it every 25 ns on 
FPGAs?
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τ/b/q/?

Algorithm

τ

b

q

?



L1 τ Identification
• NN algorithm capable of accepting more τ 

leptons than traditional cut-based method


• Network is 3 layer dense model, uses 
information about particle pT, η, φ, and type


• Outputs decision in 38 ns (9 clocks @ 240 
MHz)
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CMS TDR-021

τ

NN 

Cut-based 

Calorimeter-only



L1 b-quark Identification

34CMS DP-2022/021

… particles …

b

• NN trained to identify b-quarks using collection of particles


• Architecture includes featurizers that act on each particle individual


• Significantly improved  
acceptance for  
HH→bbbb events  
with low mHH  
(compared to  
traditional cut- 
based methods)



• What if we don’t know exactly what we are looking for?


• ML offers unique solution to this challenge (no traditional alternative)


• Broad field of anomaly detection

Anomaly Detection
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Fast Anomaly Detection?
• Depending on anomaly, we could have none left in recorded data


• Low-latency ML is the only option!
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Conclusions
• Increasingly possible to perform 

low latency inference of ML 
models


• Also low-power, high radiation


• ML offers improved performance 
over traditional algorithms


• Potential for better alignment of 
offline and online algorithms


• Applications in many fields, areas

37



BACKUP
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Precision
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Di-Higgs Decays
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• Lots of background that mimics these signals → very difficult to record


• Low mHH is most critical, but produced object have lower energy

λHHH at low mHH



Fast Anomaly Detection
• Algorithm could take in relevant objects 

in each event


• Low latency is significant limitation on 
anomaly detection


• Performance depends on signals
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hls4ml Support
• Support for:


• MLPs, BDTs [arXiv:2002.02534], CNNs [arXiv:2101.05108], Binary & 
Ternary NNs [arXiv:2003.06308], Quantization-aware training (QKeras) 
[arXiv:2006.10159], Modified GarNet architecture (GraphNN) 
[arXiv:2008.0360], RNNs/LSTMs/GRUs [arXiv:2207.00559]


• Active maintenance and development


• Many applications for fast ML in physics (low latency, low power)
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https://arxiv.org/pdf/2002.02534.pdf
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Reuse
• For lowest latency, 

compute all 
multiplications at once


• Reuse = 1 (fully parallel) 
→ latency = # layers)


• Larger reuse implies more 
serialization


• Allows trading higher 
latency for lower resource 
usage
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Layer 1 Layer 2



Applications
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