

Machine learning for lowlatency inference

Introduction

- Machine learning (ML) is becoming more and more popular
 - Availability of CPUs, GPUs, software has accelerated adoption
- What about low-latency (FPGA/ASIC-based) systems?
 - (How) can ML inference be run effectively in O(100 ns)?
- Applications
- Future

Machine Learning (ML) is Everywhere

Machine Learning is (almost) Everywhere

- Trends in ML towards bigger and more complicated models, more computing (GPUs)
- → Majority of ML in physics is "off detector"
 - System latency limits are typically soft (if at all)
 - No radiation
 - Issues do not impact data collection
 - Can re-run algorithms/workflows

What if...

- What if:
 - System latency limits are low? $(\lesssim \mu s)$
 - High radiation?
- Requires dedicated hardware
 - FPGAs (or ASICs)

What is an FPGA?

- Field-programmable gate array
- Building blocks:
 - Multiplier units (DSPs) [arithmetic]
 - Look Up Tables (LUTs) [logic]
 - Flip-flops (FFs) [registers]
 - Block RAMs (BRAMs) [memory]
- Algorithms are wired onto the chip
 - Can only use the resources on the chip
- Run at high frequency: hundreds of MHz, O(ns) runtime

What is a Neural Network?

What is a Neural Network?

--

8

Inference on FPGAs

Inference on FPGAs

10

Inference on FPGAs

- Each part of network must be placed on the FPGA, connected together
- Cannot implement an algorithm if there are no resources left

- hls4ml is a software package for automatically creating implementations of neural networks for FPGAs and ASICs
 - https://fastmachinelearning.org/hls4ml/ [arXiv:1804.06913]
 - pip installable
- Supports common layer architectures and model software (keras, tensorflow, pytorch, ONNX)
- Part of larger Fast Machine Learning collaboration

hls4ml Workflow

Many Others

• NNs:

arXiv: 2004.03021

Boosted Decision Trees (BDTs):

arXiv: 2002.02534

• Entirely non-exhaustive list...

ML Size / Complexity

- Regardless of toolkit, limitation of doing low latency ML is FPGA size
 - Bigger FPGA → more resources → more computation

Xilinx Virtex Ultrascale+ VU13P 12288 Multipliers 1.7M LUTs 3.4M FFs 95 Mb BRAM

- Pruning and quantization are ways to reduce resources
 - Challenge is maintaining performance

Are all the pieces a given network necessary?

- Are all the pieces a given network necessary?
- Many different types of pruning
- Magnitude-based:
 - Use regularization (penalty term in loss function for large weights)
 - Remove smallest weights
 - Repeat
- Multiplications by 0 can be completely removed from FPGA design

$$L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda ||\mathbf{w}||$$

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 d from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large was
 - Remove smallest v
 - Repeat
- Multiplications by 0 d from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 c from FPGA design

- Are all the pieces a g
- Many different types
- Magnitude-based:
 - Use regularization function for large w
 - Remove smallest v
 - Repeat
- Multiplications by 0 d from FPGA design

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

 FPGAs are well suited to fixed-point numbers, not floating point

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

- FPGAs are well suited to fixed-point numbers, not floating point
- Bitwidth can be adjusted as needed (impacts accuracy, performance, resources)
 - Can be combined with other customizations
- Quantization-aware training [arXiv:2006.10159]
 - Can greatly reduce size of network by training with knowledge of quantization

An Application

Large Hadron Collider (LHC)

LHC Data Processing / Readout

LHC Data Processing / Readout

Di-Higgs Production

- HH is best way to measure scalar potential of Higgs field
 - Higgs self-coupling: λημη

 Lots of background that mimics these signals → very difficult to record

bb

33%

25%

7.4%

0.26%

bb

WW

ττ

ZZ

γγ

Particle Identification

- HH → bbbb, bbττ
- Can we design algorithms to differentiate different collections of particles / detector signals
 - τ lepton, bottom quark
 - Light quarks, gluons, noise, combinatorics
- Can we do it every 25 ns on FPGAs?

L1 T Identification

- NN algorithm capable of accepting more τ leptons than traditional cut-based method
- Network is 3 layer dense model, uses information about particle p_T , η , φ , and type
- Outputs decision in 38 ns (9 clocks @ 240 MHz)

CMS TDR-021

L1 b-quark Identification

- NN trained to identify b-quarks using collection of particles
- Architecture includes featurizers that act on each particle individual

• Significantly improved acceptance for HH→bbbb events with low mhh (compared to traditional cut-based methods)

• Significantly improved (6 features/part) (6 features/part) (50 featu

Anomaly Detection

- What if we don't know exactly what we are looking for?
- ML offers unique solution to this challenge (no traditional alternative)

Fast Anomaly Detection?

- Depending on anomaly, we could have none left in recorded data
- Low-latency ML is the only option!

Conclusions

- Increasingly possible to perform low latency inference of ML models
 - Also low-power, high radiation
- ML offers improved performance over traditional algorithms
 - Potential for better alignment of offline and online algorithms
- Applications in many fields, areas

BACKUP

Precision

Di-Higgs Decays

- Lots of background that mimics these signals → very difficult to record
- Low m_{HH} is most critical, but produced object have lower energy

Fast Anomaly Detection

- Algorithm could take in relevant objects in each event
- Low latency is significant limitation on anomaly detection
- Performance depends on signals

		_				
Model	DSP [%]	LUT [%]	FF [%]	BRAM [%]	Latency [ns]	II [ns]
DNN AE QAT 8 bits	2	5	1	0.5	130	5
CNN AE QAT 4 bits	8	47	5	6	1480	895
DNN VAE PTQ 8 bits	1	3	0.5	0.3	80	5
CNN VAE PTQ 8 bits	10	12	4	2	365	115

arXiv:2108.03986

hls4ml Support

- Support for:
 - MLPs, BDTs [arXiv:2002.02534], CNNs [arXiv:2101.05108], Binary & Ternary NNs [arXiv:2003.06308], Quantization-aware training (QKeras) [arXiv:2006.10159], Modified GarNet architecture (GraphNN) [arXiv:2008.0360], RNNs/LSTMs/GRUs [arXiv:2207.00559]
- Active maintenance and development
 - Many applications for fast ML in physics (low latency, low power)

Reuse

- For lowest latency, compute all multiplications at once
 - Reuse = 1 (fully parallel)
 → latency = # layers)
- Larger reuse implies more serialization
- Allows trading higher latency for lower resource usage

Applications

Eur. Phys. J. C (2021) 81 :969

arXiv: 2111.08590

