Theory Challenges in Neutrino Physics

Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

The 2023 EPS High Energy and Particle Physics Prize is awarded to
Cecilia Jarlskog for the discovery of an invariant measure of CP violation in both quark and lepton sectors; and ...

Jarlskog Invariant: 1985

Quarks

$$
J=(3.08 \pm 0.14) \times 10^{-5}
$$ also used in SMEFT

$$
\begin{gathered}
J_{i j}^{\alpha \beta} \equiv \Im\left\{U_{\alpha i} U_{\beta i}^{*} U_{\alpha j}^{*} U_{\beta j}\right\}=J \sum_{k, \gamma} \\
J_{p d g}=s_{23} c_{23} s_{13} c_{13}^{2} s_{12} c_{12} \sin \delta \\
J_{l}=(3.36 \pm \mathbf{0 . 0 6}) \sin \delta_{C P} \times \mathbf{1 0}^{-\mathbf{2}}
\end{gathered}
$$

And the Daya Bay and RENO collaborations for the observation of shortbaseline reactor electron-antineutrino disappearance, providing the first determination of the neutrino mixing angle Θ_{13}, which paves the way for the detection of CP violation in the lepton sector.

$\left|\Delta m_{e e}^{2}\right|=2.52(\pm 2.4 \%) \times 10^{-3} \mathrm{eV}^{2}$ note: $\quad \frac{\Delta m_{21}^{2}}{\left|\Delta m_{\text {ee }}^{2}\right|}=\mathbf{3 . 0 \%}$

$$
\nu_{e} \text { average of } \Delta m_{31}^{2} \text { and } \Delta m_{32}^{2}
$$

$\Delta m_{e e}^{2} \equiv \cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}$
$\left|U_{e 3}\right|^{2}=\sin ^{2} \theta_{13}=0.0215(\pm 2.8 \%)$
Nunokawa, SP, Zukanovich hep/0503283
NO and IO orderings have same $\left|\Delta m_{e e}^{2}\right|$ within 2.4%

- Neutrino Flavor Puzzle
- Neutrino Oscillation Phenomenology
- Nuclear Theory for Neutrino Physics
- Neutrino Flavor Puzzle

Neutrino Mass EigenStates or Propagation States:

$$
\text { Propagator } \nu_{j} \rightarrow \nu_{k}=\delta_{j k} e^{-i\left(\frac{m_{j}^{2} L}{2 E_{\nu}}\right)}
$$

粡
$\left|U_{e 2}\right|^{2} \approx 0.3 \approx \frac{C C}{C C} \quad \nu_{1}, \nu_{2}$ Mass Ordering:
-solar mass ordering

mass

$$
\left|\Delta \boldsymbol{m}_{\mathbf{2}}^{2}\right|=\left|\boldsymbol{m}_{2}^{2}-\boldsymbol{m}_{1}^{2}\right|=\mathbf{7 . 5} \times \mathbf{1 0}^{-\mathbf{5}} \mathrm{eV}^{2} \quad L / E=15 \mathrm{~km} / \mathrm{MeV}=15,000 \mathrm{~km} / \mathrm{GeV}
$$

$$
\text { SNO } m_{2}>m_{1}
$$

$$
\nu_{e}=
$$

$$
\nu_{\mu}=\square \quad \nu_{\tau}=
$$

$\nu_{3}, \quad \nu_{1} / \nu_{2}$ Mass Ordering:

-atmospheric mass ordering

$$
\left|\Delta \boldsymbol{m}_{\mathbf{3 1}}^{2}\right|=\left|\boldsymbol{m}_{\mathbf{3}}^{2}-\boldsymbol{m}_{1}^{2}\right|=\mathbf{2 . 5} \times \mathbf{1 0}^{-\mathbf{3}} \mathrm{eV}^{2} \quad L / \boldsymbol{E}=0.5 \mathrm{~km} / \mathrm{MeV}=500 \mathrm{~km} / \mathrm{GeV}
$$

unknown: SK,T2K, NOvA, JUNO, ICECUBE, DUNE, KNO, ...

$$
\nu_{e}=\square \quad \nu_{\mu}=\square \quad \nu_{\tau}=
$$

Neutrino

- Why is the Mixing Matrix so different $V_{M N S} \sim$

Quarks

$$
V_{C K M} \sim\left(\begin{array}{ccc}
1 & 0.2 & 0.001 \\
0.2 & 1 & 0.01 \\
0.001 & 0.01 & 1
\end{array}\right)
$$

Why are the nu masses so Tiny ?

Seesaw Mass Matrix:

$$
\begin{gathered}
\left(\nu_{L}, \nu_{R}, \bar{\nu}_{L}, \bar{\nu}_{R}\right) \quad \text { Note: } \nu_{L} \underset{\mathrm{CPT}}{\overleftrightarrow{\nu_{\nu}}} \text { and } \nu_{R} \underset{\mathrm{CPT}}{\overleftrightarrow{\nu_{\nu}}} \\
\left(\begin{array}{cc}
\nu_{L} \text { to } \bar{\nu}_{R} & \nu_{L} \text { to } \nu_{R} \\
\bar{\nu}_{L} \text { to } \bar{\nu}_{R} & \bar{\nu}_{L} \text { to } \nu_{R}
\end{array}\right)=\left(\begin{array}{cc}
0 & D \\
D^{*} & M
\end{array}\right)
\end{gathered}
$$

Eigenvalues \& Eigenvectors:
Light Majorana Neutrino (mass $\left.\frac{D^{2}}{M}\right) \quad \nu=\left(\nu_{L}, \bar{\nu}_{R}\right)+\frac{D}{M}\left(\bar{\nu}_{L}, \nu_{R}\right)$
Heavy Neutral Majorana Lepton (mass $M) \quad N=\left(\nu_{R}, \bar{\nu}_{L}\right)-\frac{D}{M}\left(\bar{\nu}_{R}, \nu_{L}\right)$
This is our BEST explanation of why Neutrino Masses are so SMALL

$$
\begin{gathered}
\left(\sum m_{\nu_{i}}<\right. \\
\text { and }
\end{gathered}
$$

the Heavy Majorana Lepton could be responsible for Leptogenesis

What about UV completion?

Symmetries in the PMNS matrix:

$$
A_{4}, S_{4}, A_{5}
$$

Intergration of Seesaw and
 Symmetries Challenging !

Leptogenesis !

Hagedorn: Wed. 9 am
Phenomenology of low-scale seesaw with flavour and CP symmetries Wed. 9 am

- Neutrino Oscillation Phenomenology

Advanced Understanding of Neutrino Oscillation Phenomena

$$
\begin{aligned}
& \begin{aligned}
& P\left(\nu_{\alpha} \rightarrow \nu_{\beta}\right)=\left|\sum_{j} V_{\alpha j}^{*} V_{\beta j} \mathrm{e}^{-i \lambda_{j} L /(2 E)}\right|^{2} \\
&=\delta_{\alpha \beta}-4 \sum_{i>j} \Re\left(V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right) \\
& \sin ^{2}\left(\Delta_{i j}\right) \\
&-8 \sum_{i>j}^{\Im\left(V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right)} \sin \Delta_{i j} \sin \Delta_{i k} \sin \Delta_{j k},
\end{aligned} \\
& \begin{array}{l}
\Delta_{i j} \equiv \frac{\Delta m_{i j}^{2} L}{4 E}
\end{array} \\
& \mathrm{~V} \text { is PMNS matrix } \\
& \mathrm{k} \text { is arbitrary, all choices are equivalent } \quad \text { The usual way of writing this term, as in the PDG, } \\
& 2 \sum_{i>j} \Im\left(V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}\right) \sin \left(2 \Delta_{i j}\right)
\end{aligned}
$$

i,j,k all different

$$
\begin{aligned}
J & \equiv \Im\left(V_{\alpha i} V_{\beta i}^{\dagger} V_{\alpha j}^{\dagger} V_{\beta j}\right)\left(\sum_{\gamma} \epsilon_{\alpha \beta \gamma}\right)\left(\sum_{k} \epsilon_{i j k}\right) \\
R_{i j} & \equiv \Re\left(V_{\alpha i} V_{\beta i}^{\dagger} V_{\alpha j}^{\dagger} V_{\beta j}\right)
\end{aligned}
$$

Unitarity - 3 ids

$$
J^{2}=R_{12} R_{13}+R_{12} R_{23}+R_{13} R_{23}
$$

Luo, Xing - 2306.1623I

Neutrino Propogation in Medium:

U is PMNS matrix: $\quad M^{2}=\operatorname{Diag}\left(m_{1}^{1}, m_{2}^{2}, \cdots, m_{n}^{2}\right)$

For Neutrino Oscillations you need the Eigenvalues ("masses") and Eigenvectors ("PMNS matrix") of H.

Eigenvalues are given by solutions of $\operatorname{Det}(\lambda I-H)=0$

Once you have the Eigenvalues, the Eigenvectors are easily obtained using:
i-th Eigenvector is given by $\quad V_{\alpha i} V_{\beta i}^{*}=\frac{\mathbf{A} \mathbf{d j}\left(\lambda_{i} I-H\right)_{\alpha \beta}}{\Pi_{j}\left(\lambda_{i}-\lambda_{j}\right)}$

Calculate $\mathbf{A d j}(H)($ and $\operatorname{Det}(H))$ and replace m_{j}^{2} with $\left(m_{j}^{2}-\lambda\right)$

OR

LeVerrier-Faddeev algorithm $\quad \operatorname{Adj}[\lambda I-H]=A_{1} \lambda^{n-1}+A_{2} \lambda^{n-2}+\cdots+A_{n}$

$$
\begin{aligned}
& A_{1}=I \text { then iterate } d_{i}=-(1 / i) \operatorname{Tr}\left[H A_{i}\right] \text { and } A_{i+1}=H A_{i}+d_{i} I \\
& \text { each iteration requires one Trace and Matrix Multipication }
\end{aligned}
$$

$$
\operatorname{Det}[\lambda I-H]=\lambda^{n}+d_{1} \lambda^{n-1}+\cdots+d_{n}
$$

Three Neutrinos in Matter:

The Jarlskog in Matter

Two Resonant factors:

$$
\begin{aligned}
\mathcal{S}_{\odot} & =\sqrt{\left(\cos 2 \theta_{12}-\left(c_{13}^{2} a / \Delta m_{21}^{2}\right)^{2}+\sin ^{2} 2 \theta_{12}\right.}, \\
\mathcal{S}_{\mathrm{atm}} & =\sqrt{\left(\cos 2 \theta_{13}-a / \Delta m_{e e}^{2}\right)^{2}+\sin ^{2} 2 \theta_{13}} .
\end{aligned}
$$

Resonances when

$$
(\ldots)=0
$$

Accuracy better than 0.1\%

$$
\Delta m_{e e}^{2} \equiv c_{12}^{2} \Delta m_{31}^{2}+s_{12}^{2} \Delta m_{32}^{2}
$$

Denton, Parke - I902.07I85
Wang-Zhou - I908.07304

Determining the MO

T2K + NOvA COMBINED

https://doi.org/10.5281/zenodo.6683827

IO prefer by ~ 1.6 unit of $\Delta \chi^{2} \quad$ Kelly, Machado, SP, Perez, Zukanovich 2007.08526 plus other papers
Devi: Imprints of scalar mediated NSI on long baseline experiments
Mohanta: Vector leptoquark U_{3} : A possible solution NOvA and T2K results on CP violation

10

By construction $\Delta \chi_{\text {min }}^{2}$ for either (or both) NO or IO at zero

$\left(\left.\Delta m_{32}^{2}\right|_{\mu d i s} ^{I O}-\left.\Delta m_{32}^{2}\right|_{D B} ^{I O}\right)+\left(\left.\Delta m_{31}^{2}\right|_{\mu d i s} ^{N O}-\left.\Delta m_{31}^{2}\right|_{D B} ^{N O}\right)=(2.4-0.9 \cos \delta) \% \Delta m_{e e}^{2}$

	$\left.\Delta m_{32}^{2}\right\|_{\mu d i s} ^{I O}-\left.\Delta m_{32}^{2}\right\|_{D B} ^{I O}$	$\left.\Delta m_{31}^{2}\right\|_{\mu d i s} ^{N O}-\left.\Delta m_{31}^{2}\right\|_{D B} ^{N O}$
NO	$(2.4-0.9 \cos \delta) \%$	≈ 0
IO	≈ 0	$(2.4-0.9 \cos \delta) \%$

Hinting at NO and $\cos \delta \leq 0$
ν_{μ} disappearance at an $\mathrm{L} / \mathrm{E} \sim 500 \mathrm{~km} / \mathrm{GeV}$

$$
\begin{aligned}
\Delta m_{\mu \mu}^{2} & \equiv \frac{\left|U_{\mu 1}\right|^{2} \Delta m_{31}^{2}+\left|U_{\mu 2}\right|^{2} \Delta m_{32}^{2}}{\left|U_{\mu 1}\right|^{2}+\left|U_{\mu 2}\right|^{2}} \quad \nu_{\mu} \text { average of } \Delta m_{31}^{2} \text { and } \Delta m_{32}^{2} \\
& \approx \Delta m_{e e}^{2}-\left(\cos 2 \theta_{12}-\sin \theta_{13} \cos \delta\right) \Delta m_{21}^{2} \quad\left(\sin 2 \theta_{12} \tan \theta_{23} \approx 1\right)
\end{aligned}
$$

$\left|\Delta m_{e e}^{2}\right|>\left|\Delta m_{\mu \mu}^{2}\right|$ implies NO
$\left|\Delta m_{e e}^{2}\right|<\left|\Delta m_{\mu \mu}^{2}\right|$ implies IO
Nunokawa, SP, Zukanovich hep/0503283

NuFIT 5.2 (2022)

NO preference with $\Delta \chi \sim 4.0$
6.5

$$
6.5 \text { approx +4.0 (SK) -I.6 (App LBL) +4.I (Dis LBL) }
$$

Time Evolution of JUNO measurements

JUNO_update_2204.I3249

For JUNO: $\left|\Delta m_{e e}^{2}\right|^{I O}=1.007\left|\Delta m_{e e}^{2}\right|^{N O}$ then $(2.4-0.9 \cos \delta) \% \rightarrow(3.1-0.9 \cos \delta) \%$ and experimental uncertainty on $\left|\Delta m_{e e}^{2}\right|$ drops to $<1 \%$. (Daya Bay 2.4\%).

Preliminary NPZ++

LBL comb.
JUNO I\%
Comb.

葠 Effect of JUNO's precision measurement on $\Delta m_{a t m}^{2}$ (1)

- Nuclear Theory for Neutrino Physics
- Matrix elements for $0 \nu \beta \beta$
- Nuclear Reactor $\bar{\nu}_{e}$ Spectra
- Cross sections and Event Generators for Neutrino Interactions (esp. on Argon)

Summary:

- Flavor Models: Mass and Mixings and connection to Leptogenesis and other BSM physics are of paramount importance
- Understanding Neutrino Oscillation Physics, 3 or more flavors in matter, to match the precision of current and future experiments is crucial
- Nuclear Theory is important for extracting the most information out of the experiments

華

Extras

范 Jarlskog in Quark Sector: (see Yuehong Xie talk)

$$
J_{q}=2 \text { Area }\left\{V_{u d} V_{u b}^{*}+V_{c d} V_{c b}^{*}+V_{t d} V_{t b}^{*}=0\right\}
$$

Using Wolfenstein parameterization:

$$
V=\left(\begin{array}{ccc}
1-\lambda^{2} / 2 & \lambda & A \lambda^{3}(\rho-i \eta) \\
-\lambda & 1-\lambda^{2} 2 & A \lambda^{2} \\
A \lambda^{3}(1-\rho-i \eta) & -A \lambda^{2} & 1
\end{array}\right)+\mathcal{O}\left(\lambda^{4}\right)
$$

$$
J_{q}=A^{2} \lambda^{6} \eta=\left(A^{2} \lambda^{6}\right) \times(2 \text { Area of }=
$$

(
where $\left(A^{2} \lambda^{6}\right) \approx 9 \times 10^{-5}$ is the scale factor for the area of Unitarity Triangle.
In the Lepton sector the Jarlskog Invariant
(and hence the area of Unitarity Triangles)
is potentially 1000 times larger!

Daya Bay:

I.

$$
\sin ^{2} \Delta_{Y Y} \equiv \cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}
$$

which implies that

$$
\Delta m_{Y Y}^{2} \equiv\left(\frac{4 E}{L}\right) \arcsin \left[\sqrt{\left(\cos ^{2} \theta_{12} \sin ^{2} \Delta_{31}+\sin ^{2} \theta_{12} \sin ^{2} \Delta_{32}\right)}\right]
$$

2.

$$
\Delta m_{Z Z}^{2} \equiv \frac{2 E}{L}\left(\Delta_{31}+\Delta_{32}+\arctan \left[\cos 2 \theta_{12} \tan \Delta_{21}\right]\right)
$$

3.

$$
\left.\Delta m_{e e}^{2} \equiv \frac{\partial}{\partial(L / 2 E)}\left(\Delta_{31}+\Delta_{32}+\arctan \left[\cos 2 \theta_{12} \tan \Delta_{21}\right]\right)\right|_{L / 2 E=0}=\cos ^{2} \theta_{12} \Delta m_{31}^{2}+\sin ^{2} \theta_{12} \Delta m_{32}^{2}
$$

Vacuum v Matter:

T2K \& NOvA

Number of Events proportional to Oscillation Probability

SK event samples

- $\mathrm{O}(45 \%)$ change in electron-like event rate between $\delta_{\mathrm{CP}}=+\pi / 2$ and $\delta_{\mathrm{CP}}=-\pi / 2$

T2K NO prefer by ~ 2 units of χ^{2}

華 ν_{e} Disappearance:
$\left|\Delta m_{e e}^{2}\right|$ same for both orderings Daya Bay:
ν_{μ} Disappearance:
$\left|\Delta m_{\mu \mu}^{2}\right|$ same for both orderings NOvA, T2K:

JUNO Events Spectra
No backgrounds, No Systematics

8 years, 26.6 GW_th

 baseline exactly 52.5 km 3.0 \% resolutionForero, SP, Ternes, Zukanovich 2107.I24IO

