

I

Stephen Parke: Theory-Fermilab linktr.ee/stephen.parke

U_pdg

The 2023 EPS High Energy and Particle Physics Prize is awarded to

Cecilia Jarlskog for the discovery of an invariant measure of CP violation in both quark and lepton sectors; and ...

Jarlskog Invariant: 1985

Quarks $J = (3.08 \pm 0.14) \times 10^{-5}$ also used in SMEFT

$$J_{ij}^{\alpha\beta} \equiv \Im\{U_{\alpha i}U_{\beta i}^{*}U_{\alpha j}^{*}U_{\beta j}\} = J \sum_{k,\gamma} \epsilon_{ijk} \epsilon_{\alpha\beta\gamma}$$

$$= 0, \pm 1$$

$$J_{pdg} = s_{23}c_{23} \ s_{13}c_{13}^{2} \ s_{12}c_{12} \ \sin \delta$$

$$J_{l} = (3.36 \pm 0.06) \sin \delta_{CP} \times 10^{-2}$$

And the Daya Bay and RENO collaborations for the observation of shortbaseline reactor electron-antineutrino disappearance, providing the first determination of the neutrino mixing angle Θ_{13} , which paves the way for the detection of CP violation in the lepton sector.

$$|U_{e3}|^2 = \sin^2 \theta_{13} = 0.0215 \ (\pm 2.8\%)$$

$$|\Delta m^2_{ee}| = 2.52~(\pm 2.4\%) \times 10^{-3}~{\rm eV}^2$$

note:
$$\frac{\Delta m^2_{21}}{|\Delta m^2_{ee}|} = 3.0\%$$

 u_e average of Δm^2_{31} and Δm^2_{32}

$$\Delta m_{ee}^2 \equiv \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

Nunokawa, SP, Zukanovich hep/0503283

3

NO and IO orderings have same $|\Delta m_{ee}^2|$ within 2.4%

Neutrino Theory
Tasting Menu
Tasting

My Selection

- Neutrino Flavor Puzzle
- Neutrino Oscillation Phenomenology
- Nuclear Theory for Neutrino Physics

Neutrino Flavor Puzzle

Neutrino Mass EigenStates or Propagation States:

Propagator
$$u_j o
u_k = oldsymbol{\delta_{jk}} e^{-i\left(rac{m_j^2L}{2E_
u}
ight)}$$

$$\nu_e =$$

Solar Exp, SNO KamiLAND Daya Bay, RENO, ... $oldsymbol{
u_2}{30\,\%\,
u_{\mathbf{e}}}$

$$u_{\mu} = \bigcirc$$

SuperK, K2K, T2K MINOS, NOvA ICECUBE u_3

least ν_e 2%

$$\nu_{\tau} = \bigcirc$$

Unitarity
SK, Opera
ICECUBE

7

ν_1 , ν_2 Mass Ordering:

-solar mass ordering

$$|\Delta m_{21}^2| = |m_2^2 - m_1^2| = 7.5 \times 10^{-5} \text{ eV}^2$$
 $L/E = 15 \text{ km/MeV} = 15,000 \text{ km/GeV}$

$$m_2 > m_1$$

$$u_{\mu} = \bigcirc$$

$$u_{\tau} =$$

ν_3 , ν_1/ν_2 Mass Ordering:

-atmospheric mass ordering

$$|\Delta m_{31}^2| = |m_3^2 - m_1^2| = 2.5 \times 10^{-3} \text{ eV}^2$$
 $L/E = 0.5 \text{ km/MeV} = 500 \text{ km/GeV}$

$$L/E = 0.5 \text{ km/MeV} = 500 \text{ km/GeV}$$

unknown: SK,T2K, NOvA, JUNO, ICECUBE, DUNE, KNO, ...

$$\nu_e =$$

$$u_{\mu} = \bigcirc$$

$$\nu_{\tau} = \bigcirc$$

Two Big Challenges:

9

Why are the Masses so Tiny ?

Why is the Mixing
 Matrix so different

Neutrino

$$V_{MNS} \sim egin{pmatrix} 0.8 & 0.5 & \textbf{0.2} \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

Quarks

$$V_{CKM} \sim \left(egin{array}{ccc} 1 & 0.2 & _{0.001} \ 0.2 & 1 & _{0.001} \ 0.001 & 1 \end{array}
ight)$$

Why are the nu masses so Tiny?

Seesaw Mass Matrix:

$$egin{aligned} \left(oldsymbol{
u_L}, \ oldsymbol{
u_R}, \ ar{
u}_L, \ ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \ ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \ ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \end{aligned} egin{aligned} ar{
u}_L ext{ to } ar{
u}_R \end{aligned} \end{pmatrix} = \left(egin{aligned} 0 & D \\ D^* & M \end{aligned}
ight) \end{aligned}$$

Eigenvalues & Eigenvectors:

Light Majorana Neutrino (mass
$$\frac{D^2}{M}$$
) $\nu = (\nu_L, \ \bar{\nu}_R) + \frac{D}{M}(\bar{\nu}_L, \ \nu_R)$

Heavy Neutral Majorana Lepton (mass
$$M$$
) $N=({\color{red} \nu_R},~{\color{red} \bar{\nu}_L})-{\color{red} D\over M}({\color{red} \bar{\nu}_R},~{\color{red} \nu_L})$

This is our BEST explanation of why Neutrino Masses are so SMALL $(\sum m_{\nu_i} < \mathcal{O}(m_e/10^6))$.

and

the Heavy Majorana Lepton could be responsible for Leptogenesis.

What about UV completion?

Symmetries in the PMNS matrix:

$$A_4, S_4, A_5$$

Petcov CERN Nu plateform 2023:

Intergration of Seesaw and Symmetries Challenging!

Leptogenesis!

Hagedorn: Wed. 9 am Phenomenology of low-scale seesaw with flavour and CP symmetries Wed. 9 am

Neutrino Oscillation Phenomenology

Advanced Understanding of Neutrino Oscillation Phenomena

$$P(\nu_{\alpha} \to \nu_{\beta}) = \left| \sum_{j} V_{\alpha j}^{*} V_{\beta j} e^{-i\lambda_{j} L/(2E)} \right|^{2}$$

$$= \delta_{\alpha\beta} - 4 \sum_{i>j} \Re(V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}) \sin^{2}(\Delta_{ij}) \qquad \text{CPC}$$

$$-8 \sum_{i>j} \Im(V_{\alpha i} V_{\beta i}^{*} V_{\alpha j}^{*} V_{\beta j}) \sin \Delta_{ij} \sin \Delta_{ik} \sin \Delta_{jk}, \qquad \text{CPV}$$

$$\Delta_{ij} \equiv \frac{\Delta m_{ij}^{2} L}{2}$$

V is PMNS matrix

k is arbitrary, all choices are equivalent

i,j,k all different

The usual way of writing this term, as in the PDG,

$$2\sum_{i>j} \Im(V_{\alpha i}V_{\beta i}^*V_{\alpha j}^*V_{\beta j})\sin(2\Delta_{ij})$$

Three Neutrinos:

$$J \equiv \Im(V_{\alpha i} V_{\beta i}^{\dagger} V_{\alpha j}^{\dagger} V_{\beta j}) \left(\sum_{\gamma} \epsilon_{\alpha \beta \gamma}\right) \left(\sum_{k} \epsilon_{ijk}\right)$$

$$R_{ij} \equiv \Re(V_{\alpha i} V_{\beta i}^{\dagger} V_{\alpha j}^{\dagger} V_{\beta j})$$

Unitarity - 3 ids

$$J^2 = R_{12}R_{13} + R_{12}R_{23} + R_{13}R_{23}$$

Luo, Xing - 2306.16231

Neutrino Propogation in Medium:

$$M^2 = {\sf Diag}(m_1^1, m_2^2, \cdots, m_n^2)$$

Interactions with medium

H in Flavor basis:

$$H = \frac{1}{2E} UM^2U^{\dagger} + A$$

For Neutrino Oscillations you need

the Eigenvalues ("masses")

and Eigenvectors ("PMNS matrix") of H.

Eigenvalues are given by solutions of

$$Det(\lambda I - H) = 0$$

Once you have the Eigenvalues, the Eigenvectors are easily obtained using:

$$V_{\alpha i}V_{\beta i}^* = \frac{\operatorname{Adj}(\lambda_i I - H)_{\alpha\beta}}{\Pi_j(\lambda_i - \lambda_j)}$$

Adjugate = transpose of cofactor matrix

Calculate $\operatorname{Adj}(H)$ (and $\operatorname{Det}(H)$) and replace m_j^2 with $(m_j^2-\lambda)$

OR

LeVerrier-Faddeev algorithm
$$\operatorname{Adj}[\lambda I - H] = A_1 \lambda^{n-1} + A_2 \lambda^{n-2} + \cdots + A_n$$

$$A_1 = I$$
 then iterate $d_i = -(1/i) \text{Tr}[HA_i]$ and $A_{i+1} = HA_i + d_i I$ each iteration requires one Trace and Matrix Multipication

$$Det[\lambda I - H] = \lambda^n + d_1 \lambda^{n-1} + \dots + d_n$$

Abdullahi + Parke: 2212.12565

Three Neutrinos in Matter:

The Jarlskog in Matter

$$J_a pprox rac{J_0}{S_{\odot}S_{atm}}$$

Two Resonant factors:

$$S_{\odot} = \sqrt{(\cos 2\theta_{12} - c_{13}^2)^2 + \sin^2 2\theta_{12}},$$

$$S_{\text{atm}} = \sqrt{(\cos 2\theta_{13} - a/\Delta m_{ee}^2)^2 + \sin^2 2\theta_{13}}.$$

Resonances when

$$(\ldots) = 0$$

Accuracy better than 0.1%

$$\Delta m_{ee}^2 \equiv c_{12}^2 \Delta m_{31}^2 + s_{12}^2 \Delta m_{32}^2$$

Denton, Parke - 1902.07185

Wang-Zhou - 1908.07304

Determining the MO

- Current Status: T2K, NOvA, Daya Bay, SK
 - Appearance
 - Disappearance
 - Combined

T2K + NOvA COMBINED

IO prefer by ~I.6 unit of $\Delta \chi^2$

Kelly, Machado, SP, Perez, Zukanovich 2007.08526 plus other papers

Devi: Imprints of scalar mediated NSI on long baseline experiments Mohanta: Vector leptoquark U_3 : A possible solution NOvA and T2K results on CP violation

By construction $\Delta \chi^2_{min}$ for either (or both) NO or IO at zero

NuFIT 5.2 (2022)

$$\left(\Delta m_{32}^2|_{\mu dis}^{IO} - \Delta m_{32}^2|_{DB}^{IO}\right) + \left(\Delta m_{31}^2|_{\mu dis}^{NO} - \Delta m_{31}^2|_{DB}^{NO}\right) = (2.4 - 0.9\cos\delta)\% \ \Delta m_{ee}^2$$

Nunokawa, SP, Zukanovich hep/0503283

	$\Delta m_{32}^2 _{\mu dis}^{IO} - \Delta m_{32}^2 _{DB}^{IO}$	$\Delta m_{31}^2 _{\mu dis}^{NO} - \Delta m_{31}^2 _{DB}^{NO}$
NO	$(2.4-0.9\cos\delta)\%$	pprox 0
Ю	≈ 0	$(2.4 - 0.9\cos\delta)\%$

Hinting at NO and $\cos \delta \le 0$

u_{μ} disappearance at an L/E \sim 500 km/GeV

$$\Delta m_{\mu\mu}^2 \equiv \frac{|U_{\mu 1}|^2 \Delta m_{31}^2 + |U_{\mu 2}|^2 \Delta m_{32}^2}{|U_{\mu 1}|^2 + |U_{\mu 2}|^2}$$

$$u_{\mu}$$
 average of Δm^2_{31} and Δm^2_{32}

$$pprox \Delta m_{ee}^2 - (\cos 2 heta_{12} - \sin heta_{13}\cos \delta)\Delta m_{21}^2$$

$$(\sin 2\theta_{12} \tan \theta_{23} \approx 1)$$

$$|\Delta m^2_{ee}| > |\Delta m^2_{\mu\mu}|$$
 implies NO

$$|\Delta m^2_{ee}| < |\Delta m^2_{\mu\mu}|$$
 implies IO

this is in vacuum, but for ν_{μ} disappearance matter effects are very small due to cancellations between $\nu_{\mu} \to \nu_{e}$ and $\nu_{\mu} \to \nu_{ au}$ for θ_{13} effects:

$$|U_{\mu 3}|^2 (1 - |U_{\mu 3}|^2) = s_{23}^2 c_{23}^2 - s_{13}^2 \cos 2\theta_{23} + s_{13}^4 s_{23}^4$$

both s_{13}^2 and $\cos 2\theta_{23}$ are small.

$$\Delta P \equiv |P_{matter} - P_{vac}|$$

 $E_{\nu}\mathsf{GeV}$

add SuperKamiokaNDE arXiv:1710.09126

NO preference with $\Delta \chi \sim 4.0$

6.5 approx +4.0 (SK) -1.6 (App LBL) +4.1 (Dis LBL)

Time Evolution of JUNO measurements

JUNO_update_2204.13249

For JUNO: $|\Delta m_{ee}^2|^{IO} = 1.007 |\Delta m_{ee}^2|^{NO}$

then $(2.4 - 0.9\cos\delta)\% \rightarrow (3.1 - 0.9\cos\delta)\%$

and experimental uncertainty on $|\Delta m_{ee}^2|$ drops to <1%. (Daya Bay 2.4%).

Preliminary NPZ++

Effect of JUNO's precision measurement on Δm_{atm}^2

my guess: Global Fits $> 3\sigma$ at Nu 2026

- Nuclear Theory for Neutrino Physics
 - Matrix elements for $0\nu\beta\beta$
 - ullet Nuclear Reactor $ar{
 u}_e$ Spectra
 - Cross sections and Event Generators for Neutrino Interactions (esp. on Argon)

Stephen Parke LP 2023 # 31

Summary:

- Flavor Models: Mass and Mixings and connection to Leptogenesis and other BSM physics are of paramount importance
- Understanding Neutrino Oscillation Physics, 3 or more flavors in matter, to match the precision of current and future experiments is crucial
- Nuclear Theory is important for extracting the most information out of the experiments

Extras

Jarlskog in Quark Sector: (see Yuehong Xie talk)

$$J_{q} = 2 \text{ Area} \left\{ V_{ud}V_{ub}^{*} + V_{cd}V_{cb}^{*} + V_{td}V_{tb}^{*} = 0 \right\}$$

Using Wolfenstein parameterization:
$$V = \begin{pmatrix} 1 - \lambda^2/2 & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + \mathcal{O}(\lambda^4)$$

$$J_q = A^2 \lambda^6 \eta = (A^2 \lambda^6) \times (2 \text{ Area of}) = (3.08 \pm 0.14) \times 10^{-5}$$

where $(A^2\lambda^6) \approx 9 \times 10^{-5}$ is the scale factor for the area of Unitarity Triangle.

In the Lepton sector the Jarlskog Invariant (and hence the area of Unitarity Triangles) is potentially 1000 times larger!

Daya Bay:

$$\sin^2 \Delta_{YY} \equiv \cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}$$
.

which implies that

$$\Delta m_{YY}^2 \equiv \left(\frac{4E}{L}\right) \arcsin \left[\sqrt{\left(\cos^2 \theta_{12} \sin^2 \Delta_{31} + \sin^2 \theta_{12} \sin^2 \Delta_{32}\right)}\right].$$

$$\Delta m_{ZZ}^2 \equiv \frac{2E}{L} \left(\Delta_{31} + \Delta_{32} + \arctan[\cos 2\theta_{12} \tan \Delta_{21}] \right)$$

$$\Delta m_{ee}^2 \equiv \frac{\partial}{\partial (L/2E)} \left(\Delta_{31} + \Delta_{32} + \arctan[\cos 2\theta_{12} \tan \Delta_{21}] \right) = \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

$$= \cos^2 \theta_{12} \Delta m_{31}^2 + \sin^2 \theta_{12} \Delta m_{32}^2$$

NPZ'05

Vacuum v Matter:

T2K & NOVA

Number of Events proportional to Oscillation Probability

T2K NO prefer by ~2 units of χ^2

NOvA NO prefer by ~I unit of χ^2

ν_e Disappearance:

 $|\Delta m_{ee}^2|$ same for both orderings Daya Bay:

$$\nu_{\mu}$$
 Disappearance:

 $|\Delta m_{\mu\mu}^2|$ same for both orderings NOvA, T2K:

$$-\Delta m_{32}^2|_{DB}^{IO} = \Delta m_{31}^2|_{DB}^{NO} + \cos 2\theta_{12}\Delta m_{21}^2$$

$$\cos 2\theta_{12} \approx 0.40$$

$$-\Delta m_{32}^2|_{\mu dis}^{IO} = \Delta m_{31}^2|_{\mu dis}^{NO} - \cos 2\theta_{12}' \Delta m_{21}^2$$

$$\cos 2\theta_{12}' = \cos 2\theta_{12} - 2s_{13}\cos \delta \approx 0.40 - 0.30\cos \delta$$

1.5 to 3.3 %

Unchanged if $31 \leftrightarrow 32$ in either or both MO's

JUNO Events Spectra

No backgrounds, No Systematics

8 years, 26.6 GW_th baseline exactly 52.5 km 3.0 % resolution

Forero, SP, Ternes, Zukanovich 2107.12410

If
$$|\Delta m_{32}^2|(IO) = |\Delta m_{32}^2|(NO)$$
, then $|\Delta m_{ee}^2|(IO) = 2.428$

If
$$|\Delta m_{31}^2|$$
 (*IO*) = $|\Delta m_{31}^2|$ (*NO*), then $|\Delta m_{ee}^2|$ (*IO*) = 2.578

If
$$|\Delta m_{32}^2|(IO) = |\Delta m_{31}^2|(NO)$$
, then $|\Delta m_{ee}^2|(IO) = 2.503$