CP violation searches in neutrino oscillations

Christopher Mauger (T2K collaboration)
University of Pennsylvania
17 July 2023
Lepton-Photon 2023, Melbourne, Australia

Outline

- Introduction to neutrino oscillations and CP violation signatures
- T2K
- NOVA
- T2K upgrade
- Conclusions
- Plenary Talks tomorrow:
 - Theory challenges in neutrino physics (Stephen Parke)
 - Future Long-baseline neutrino experiments (Francesco Terranova)

Neutrino oscillation phenomena

Flavor eigenstates:

Flavor eigenstates created in weak interactions $|\nu_{\alpha}\rangle = \sum_{i=1}^{3} U_{\alpha i} |\nu_{i}\rangle$, $for \ \alpha = e, \mu, \tau$

where $|\nu_i\rangle$ mass eigenstates. Time evolution: Propagates with free particle Hamiltonian

$$|\nu_{\alpha}(t)\rangle = \sum_{i=1}^{3} U_{\alpha i} \exp(-i\hat{H}t) |\nu_{i}\rangle$$

Survival Probability:

$$P_{\nu_{\alpha} \to \nu_{\alpha}} = |\langle \nu_{\alpha} | \nu_{\alpha}(t) \rangle|^{2}$$

Neutrino oscillation physics

Two-Flavor Case:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \nu_1 \\ \nu_2 \end{pmatrix}$$

$$P_{\nu_e \to \nu_e} = |\langle \nu_e | \nu_e(t) \rangle|^2 = 1 - \sin^2 2\theta \sin^2 (1.27\Delta m^2 \frac{L}{E})$$

$$\Delta m^2 = m_2^2 - m_1^2 \, (eV^2)$$

L distance from production (km) or (m) E energy of neutrino (GeV) or (MeV)

Dependence on L/E – generically true

Neutrino oscillation physics

Two-Flavor Case:

$$\begin{pmatrix} \nu_e \\ \nu_\mu \end{pmatrix} \ \, \mbox{Size of difference of squared masses} \\ \ \, \mbox{drives the oscillation length} - \\ \ \, \mbox{important experimental consideration}$$

$$P_{\nu_e \to \nu_e} = |\langle \nu_e | \nu_e(t) \rangle|^2 = 1 - \sin^2 2\theta \sin^2 (1.27 \Delta m^2 \frac{L}{E})$$

$$\Delta m^2 = m_2^2 - m_1^2 \, (eV^2)$$

L distance from production (km) or (m) E energy of neutrino (GeV) or (MeV)

What do we measure in experiments?

In experiments, we control L and E, nature gives us the mixing angle θ and the differences of squared masses Δm^2 .

We can fix L or E or have a spectrum of L's and E's.

Survival Probability

$$1 - \sin^2 2\theta \sin^2 \left(1.27 \Delta m^2 \frac{L}{E} \right)$$

Three-flavor oscillations

• If all elements of *U* are real, no CP violation

$$egin{pmatrix} v_e \ v_\mu \ v_ au \end{pmatrix} = egin{pmatrix} U_{e1} & U_{e2} & U_{e3} \ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \ U_{ au 1} & U_{ au 2} & U_{ au 3} \end{pmatrix} egin{pmatrix} v_1 \ v_2 \ v_3 \end{pmatrix}$$

- CP violation only manifest in neutrino oscillations if relative complex phase between elements of U
- Matrix often parameterized as follows:

$$s_{ij} = \sin \theta_{ij}, \quad c_{ij} = \cos \theta_{ij}$$

$$\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \times \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{-i\delta} & 0 & c_{13} \end{pmatrix} \times \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Three-flavor oscillations

• Search for CP violation with neutrino oscillations is a comparison of flavor transformation probabilities, for example:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \stackrel{?}{=} P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$$

- Six possible approaches, above the most common
- Why?
 - Want to identify the neutrino flavor need charged current interactions
 - Want to produce high-flux beam
- Muon neutrino and anti-neutrino beams are the conventional choice high fluxes of neutrinos or anti-neutrinos above both muon and electron CC threshold
- For ~GeV neutrinos, oscillation lengths 100's of km long-baseline neutrino oscillation experiments
- We fix L, determine E from data, fit to an oscillation hypothesis
- Determining E from data a key challenge at these energies

Three-flavor oscillations

- Three angles and two independent Δm^2
- All three angles have been measured, magnitudes of Δm^2 's and the sign of one Δm^2 have been measured
- Ambiguity of sign of one Δm^2 is the neutrino mass ordering problem

• Neutrinos pass through matter – lots of electrons, earth is not CP symmetric

$$\begin{split} P\left(\overleftarrow{\nabla}_{\mu}^{\flat} \to \overleftarrow{\nabla}_{e}^{\flat}\right) &\approx & \sin^{2}\theta_{23} \frac{\sin^{2}2\theta_{13}}{(A-1)^{2}} \sin^{2}[(A-1)\Delta_{31}] \\ &- \alpha \frac{J_{0}\sin\delta_{CP}}{A(1-A)} \sin\Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}] \\ &+ \alpha \frac{J_{0}\cos\delta_{CP}}{A(1-A)} \cos\Delta_{31} \sin(A\Delta_{31}) \sin[(1-A)\Delta_{31}] \\ &+ \alpha^{2}\cos^{2}\theta_{23} \frac{\sin^{2}2\theta_{12}}{A^{2}} \sin^{2}(A\Delta_{31}) \end{split} \qquad \qquad \begin{aligned} \alpha &= \Delta m_{21}^{2}/\Delta m_{31}^{2} \\ \Delta_{ij} &= \Delta m_{ij}^{2}L/4E \\ A &= (-)2\sqrt{2}G_{F}n_{e}E/\Delta m_{31}^{2} \\ J_{0} &= \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \cos \theta_{13} \end{aligned}$$

T2K Experiment

- Near Detector detailed studies of neutrino and anti-neutrino beams in high flux environment
- Excellent forward-particle measurements
- Far detector isotropic measurement of event signatures

T2K Collaboration

~500 members, 76 institutes, 13 countries (+CERN)

J-PARC

Japan Proton Accelerator Research Complex

- Located in Tokai-village, 60km N.E. of KEK
- Completed in 2009
- MR
 - 1567.5 m circum.
 - Tp = 30GeV
 - 8 bunch (h#=9)
 - Rep cycle: 2.48sec upgraded to 1.3 s
- Design goal
 - RCS: 1MW
 - MR: 750kW

Joint project of KEK & Japan Atomic Energy Agency (JAEA)

J-PARC Neutrino beam facility

T2K Neutrino Fluxes

- T2K is an off-axis experiment focus on neutrino energies relevant to oscillation physics
- Determining true neutrino energy is the crucial challenge
- Higher energy neutrinos generate feed-down background that can hide the oscillation signal

T2K Near Detector

ND data employed to constrain neutrino interaction models

Super-Kamiokande Detector

- 13,000 photomultiplier tubes (PMTs) in a 50 kt water tank
- Excellent electron-muon flavor discrimination

Distinguish showering vs. nonshowering events — flavor identification

- By detecting Cherenkov light, Super-Kamiokande can distinguish the patterns of showering vs. non-showering events
- Electrons will create showering events (charged-current v_e)
- Muons will create non-showering events (charged-current v_{μ})

non-showering

showering

Protons on Target

• ND280 (Runs 2-9); INGRID, Super-Kamiokande (Runs 1-10)

Analysis Strategy

- Neutrino flux
 - Beamline monitors
 - External measurements
 - Detailed simulation
- Unoscillated flux and cross section
 - Detailed ND280 measurements
 - External constraints
 - Detailed neutrino interaction simulation
- Oscillated flux
 - Five far detector samples exploring electron neutrino appearance and muon neutrino disappearance
 - Near detector fits crucial for robust and precise determination of neutrino energy

Neutrino Flux

- Many improvements in modeling
- 2020 NA61/SHINE data with T2K replica target

Near Detector Measurements

• Detailed measurements of 18 samples at the near site used to tune the neutrino interaction model

Far Detector Samples

Lepton angle [deg]

- Selection of 1-ring events consistent with quasi-elastic topology

 better neutrino energy determination
- Three neutrino-mode and two anti-neutrino-mode samples included

Sample		True δ_{CP} (rad.)				Data
		$-\pi/2$	0	$\pi/2$	π	Data
$1R\mu$	v-mode	346.61	345.90	346.57	347.38	318
	\overline{v} -mode	135.80	135.45	135.81	136.19	137
1Re	v-mode	96.55	81.59	66.89	81.85	94
	\overline{v} -mode	16.56	18.81	20.75	18.49	16
1Re1de	v-mode	9.30	8.10	6.59	7.79	14

Impact of near detector analysis

• Uncertainty on neutrino energy reconstruction significantly reduced — near detector measurements reduce systematic uncertainties and improve the quality of far detector predictions

Measurement of CP-violating phase

- Right: T2K results with frequentist analysis
 - Disfavor at 3σ , most values of $\delta > 0$
 - No CP violation disfavored at $>2\sigma$
 - Uses reactor θ_{13} constraint see next talk by Liang Zhan
- Below: Comparison of data fit with toy MCs produced for $\delta = -\pi/2$

- T2K talk: Henry Israel, Neutrino Session 18 July, WAGASCI: John Nugent (poster)
- HK: Paul Soler Neutrino Session 19 July

NOVA Experiment

NOVA information from: A.
 Norman, DPF 2009; K.
 Sutton, NNN21 (2022); PRD 106, 032004 (2022)

Internationa Falls

- Off-axis long-baseline neutrino oscillation experiment FNAL to Ash River, Minnesota
- Functionally identical near and far detectors
 - Scintillator tracking calorimeters PVC cells filled with liquid scintillator
 - ND 300 tons, 1 km
 - FD 14 kt, 810 km
- Neutrino and anti-neutrino data plan to double the data-set between now and turnoff (2026 or 2027 depends on DUNE)

NOVA Experiment

- T2K + NOVA collaborations conducting a combined analysis began before the pandemic
- Treatment of systematics, neutrino interaction model require a lot of work
- Hopeful for results soon
- NOVA talk: Liudmila Kolupaeva Neutrino Session 19 July
- T2K/NOVA discrepancy: Rukmani Mohanta Neutrino Session 18 July

Atmospheric Neutrinos – muon and electron neutrino flavors

Neutrinos from just above the detector – small L

Super-Kamiokande – T2K joint analysis

Above for Normal Ordering

- T2K sensitive to CP violation weak sensitivity to mass ordering
- SK sensitive to mass ordering – weak sensitivity to CP violation
 - Combined analysis underway
 - Treatment of combined systematics crucial

Motivation for the T2K Near Detector Upgrade

- Current ND280
 - Limited acceptance for large angles
 - High detection threshold for protons
 - No neutron information
- Improvements yield improvements in neutrino energy determination

Overview of the Upgrade Detector

- Super Fine-Grained Detector (SFGD)
 - Primary target solid scintillator detector composed of 1-cm cubes
 - Groups on 3 continents contributing to this detector
- High-Angle Time-projection chambers (HA-TPC)
- Time of flight detectors (ToF)

High Angle Time-Projection Chambers

- High resolution tracking and particle ID
- Minimized dead space
- Employs resistive MicroMegas
- Transverse to primary neutrino target for exceptional high-angle efficiency
- Dimensions: 187cm x 200cm x 82cm
- Prototypes run at CERN and DESY: muons, electrons, protons, pions

Super Fine-Grained Detector: SFGD

1x1x1 cm³ cubes
Polystyrene scintillator
1.5% paraterphenyl
0.01% POPOP
Chemical etched reflector
WLS fiber Kuraray Y11
2-clad (∅=1mm)

- 3D-array of 1-cm scintillator cubes (184x192x56)
- Fibers run the length (or width or height) of the detector -3-fibers in each cube
- Low-occupancy experiment 3D view of events (4π like acceptance)
- Prototype detectors neutron measurements

Prototypes

Tests in charged particle and neutron beams

SFGD Prototype (8x24x48):

- Charged particle beam at CERN
- Neutron beam at LANL

US-Japan Prototype (8x8x32):

Neutron beam at LANL

Neutron Cross Section vs Neutron Energy

https://arxiv.org/abs/2207.02685

A. Blondel et al 2020 JINST 15 P12003

Performance and Capabilities of Upgraded Detector

- Greatly improved performance for transverse particles
- Excellent neutron detection *and* neutron measurement of kinetic energy via time of flight *within* the SFGD
- Momentum by range -3% for stopping muons

Simulated Event in Upgraded ND

Summary

- Neutrino oscillation experiments are an excellent laboratory with which to explore leptonic CP violation
- Long-baseline experiments are required due to the neutrino oscillation lengths relevant for neutrino beams above muon and electron CC production thresholds
- Strong evidence for CP violation now exists from T2K
- Look forward to an exciting future ahead
- Thank you very much to the organizers for the invitation to your beautiful city and stimulating conference!

Reconstructed – True Neutrino Energy:

Full kinematics give window to nucleon state

• Improved proton reconstruction performance – higher precision neutrino energy reconstruction

- Solid lines reconstruct neutrino energy with both muons and protons
- Dotted lines reconstruct neutrino energy with only muons (employ quasi-elastic assumption)
- Red and blue are different hypotheses of true nucleon removal energy
- Upper plot perfect reconstruction
- Lower plot anticipated reconstruction resolutions with SFGD (< 5% on neutrino energy)
- Proton and muon _____
 momentum resolutions assumed in the calculations

Phys. Rev. D 105, 032010

Transverse kinematic imbalance isolates different neutrino interaction modes

- Contribution of different neutrino interaction mode for charged current, zero pion events
- Low kinematic imbalance region probes Fermi motion
- High imbalance region probes final state interactions and correlated nucleon states
- Very low imbalance region in anti-neutrinos probes interactions on hydrogen

Phys. Rev. D 105, 032010