

Heavy flavor production at the LHC

Victor Feuillard, Heidelberg University,
On behalf of the ALICE, ATLAS, CMS and LHCb collaborations

Introduction – Heavy flavors

- Heavy flavor hadrons contain one heavy *c* or *b* quark
- Because of their large masses ($m_b>m_c\gg\Lambda_{QCD}$), they have a short formation time and experience the whole medium evolution
- Heavy quarks are produced in initial hard scattering with moderate to large Q²
 -> their production can be described with perturbative QCD calculations
- The production can be described with the factorization approach:

$$\int \sigma_{(AB\to CX)} \propto PDF(x_a, Q^2)PDF(x_b, Q^2) \otimes \sigma_{(ab\to cd)} \otimes D_c^C(z_c, Q^2)$$

- Parton distribution functions (non perturbative)
- Partonic cross section (perturbative)
- Fragmentation functions (non perturbative)
- Fragmentation functions are assumed to be universal across collision systems

Introduction – What can we measure and learn?

Introduction – What can we measure and learn?

Energy loss : Interaction of heavy quarks

with the medium

$$R_{\rm AA} = \frac{Y_{\rm AA}}{N_{\rm coll} \cdot Y_{\rm pp}}$$

• Collectivity:
$$\frac{\mathrm{d}^3 N}{\mathrm{d}^3 p_{\mathrm{AA}}} = \frac{1}{2\pi} \frac{\mathrm{d}^2 N}{p_{\mathrm{T}} \mathrm{d} p_{\mathrm{T}} \mathrm{d} y} \left[1 + \sum_{n=1}^{\infty} 2 v_n \cos \left(n (\phi - \Psi_R) \right) \right]$$

Elliptic flow v_2 : initial anisotropy and reintteractions

Triangular flow v_3 :fulctuations of the initial state

Introduction – What can we measure and learn?

- Coalescence: combination of quarks close in phase space
- Fragmentation: 'break up' of charm quark

 Statistical hadronization : charm quarks distributed to hadrons according to thermal weights

Introduction – Different collision systems

- Measurements in different collision size allow to investigate several properties
- Proton-proton collisions :
 - Measurement of fragmentation fractions
 - Test of pQCD models regarding hadron formation

- Proton-Nucleus collisions :
 - Initial state effects
 - Interplay between soft and hard process
- Nucleus-Nucleus collisions
 - Properties of the Quark-Gluon Plasma
 - Final state effects

D⁰ production in p-Pb at 8.16 TeV

LHCb, arXiv:2205.03936

• The measurement of D⁰ production in p–Pb allows to investigate partonic structures

EPPS16, Eur. Phys. J. C 77 (2017) 163 nCTEQ15, Phys. Rev. D 93 (2016) 085037 Fully Coherent Energy Loss (FCEL), JHEP 01 (2022) 164

- R_{FB} is the forward/backward production ratio
- Significant production asymmetry at low p_T
- R_{FB} shows a rising trend with p_T , beyond 5 GeV/c somewhat higher than nPDF calculations

Λ_c^+ measurements

- The Λ⁺_c R_{AA} is < 1 in central Pb–Pb collisions, lower than in p–Pb
 ⇒ suppression due to shadowing and modifications in the hadronisation mechanism.
- In the 30–50% centrality interval, the Λ_c^+ $R_{\rm AA}$ is compatible with 1 within the uncertainties.
- The Λ⁺_c R_{pPb} is closer to 1 than the R_{AA} in central collisions
 ⇒ expected because of smaller shadowing effects in p-Pb compared to Pb-Pb collisions
- The Λ_c^+ and D⁰ R_{AA} are very similar \Rightarrow no significant enhancement of charm baryons compared to charm mesons in Pb–Pb vs pp

Λ_c^+/D^0 measurement vs p_{T}

0.6

pp: |y| < 0.5

 $p-Pb: -0.96 < y_{cms} < 0.04$

10 p₊ (GeV/c)

- Models successfully describe Λ_c^+/D^0 ratio in pp with a combination of completely different theoretical frameworks
- The ratio in p-Pb is compatible with pp at low p_T
- The shift of the maximum towards higher p_T can be explained by radial flow
- The ratio in Pb–Pb at high p_T is compatible with pp ⇒ no significant contribution from the coalescence process at high p_{T}

ALICE, Phys. Rev. C 107 (2023) 6, 064901 CMS, CMS-PAS-HIN-21-004 **PYTHIA8+CR2, JHEP 08 (2015) 003** Catania, PLB 821 (2021) 136622 SHM+ROM. PLB 795 (2019) 117 **He and Rapp**, PRL124 (2020) 042301 QCM, Li, Shao & Song, Chin. Phys. C 45 113105

 p_{\pm} (GeV/c)

Global uncertainty pp: 6.6%

• D meson R_{AA} compared to other particles shows strong indication of mass ordering at low p_T .

- For p_T < 8 GeV/c, $R_{AA}(\pi)$ < $R_{AA}(D) \le R_{AA}(J/\boldsymbol{\psi})$
- For $10 < p_T < 20 \text{ GeV/}c$, $R_{AA}(D) \le R_{AA}(J/\psi^{\text{non-prompt}})$ but $R_{AA}(D) \sim R_{AA}(J/\psi^{\text{prompt}})$ \Rightarrow charm quarks lose more energy than beauty quarks in the QGP

ALICE, JHEP 01 (2022) 174

• Models struggle to provide a good description of both R_{AA} and v_2 in semi-central collisions.

ALICE, JHEP 01 (2022) 174

TAMU: PRL124 (2020) 042301

LIDO: PRC 100 n.6 (2019) 064911

PHSD: Phys. Rev. C 96 (2017) 014905

DAB-MOD: Phys. Rev. C 102 n.2 (2020) 024906 **LBT**: Phys. Rev. C 94 n.1 (2016) 014909 **POWLANCE HIT**: EPIC 75 n.3 (2015) 121

POWLANG+HLT: EPJC 75 n.3 (2015) 121 **LGR**: EPJC 80 (2020) 671, EPJC 80 (2020) 1113 **MC@sHQ+EPOS2**: Phys. Rev. C 89 (2014) 014905

Catania: Phys. Rev. C 96 (2017) 044905

- Models struggle to provide a good description of both R_{AA} and v_2 in semi-central collisions.
- For example: Linear Boltzmann Transport (LBT) model reproduces v_2 but misses the R_{AA} at low p_T

ALICE, JHEP 01 (2022) 174

TAMU: PRL124 (2020) 042301

LIDO: PRC 100 n.6 (2019) 064911

PHSD: Phys. Rev. C 96 (2017) 014905

DAB-MOD: Phys. Rev. C 102 n.2 (2020) 024906 **LBT**: Phys. Rev. C 94 n.1 (2016) 014909 **POWLANG+HLT**: EPJC 75 n.3 (2015) 121

POWLANG+HLT: EPJC 75 n.3 (2015) 121 **LGR**: EPJC 80 (2020) 671, EPJC 80 (2020) 1113 **MC@sHO+EPOS2**: Phys. Rev. C 89 (2014) 014905

Catania: Phys. Rev. C 96 (2017) 044905

 The data-model comparison allows to constrain the heavy quark spatial diffusion coefficient: $1.5 < 2\pi D_s T_c < 4.5 T_c \sim 155 \text{ MeV}$ \Rightarrow the thermalisation time of charm quark $3 \lesssim \tau_{charm} \lesssim 9$ fm/c, compatible with the QGP lifetime

21/07/2023

Charm and beauty hadrons in QGP

 $b \rightarrow \mu$

- DAB-MOD $c \rightarrow D^0 \rightarrow \mu$

DAB-MOD $b \rightarrow B^0 \rightarrow u$

DREENA-B $c \rightarrow D^0 \rightarrow u$ DREENA-B $b \rightarrow B^0 \rightarrow \mu$

25

 $p_{_{\perp}}$ [GeV]

 There is substantial suppression of muons from both charm- and bottom-hadron decays for the $p_{\rm T}$ range covered

15

20

ALICE, arxiv:2211.13985

Charm and beauty hadrons in QGP

- There is substantial suppression of muons from both charm- and bottom-hadron decays for the $p_{\rm T}$ range covered
- ALICE and ATLAS measurments shows good agreement
- Model calculations agree qualitatively with both v_2 and $R_{\rm AA}$ for both charm and bottom muons

ALICE, arxiv:2211.13985 ATLAS, Phys.Lett.B 829 (2022) 137077 DAB-MOD, Phys. Rev. C 96 (2017) 064903 DREENA-B, Phys. Lett. B 791 (2019) 236–241

Charm and beauty hadrons in QGP

 $b \rightarrow \mu$

DAB-MOD $c \rightarrow D^0 \rightarrow \mu$

DAB-MOD $b \rightarrow B^0 \rightarrow \mu$ DREENA-B $c \rightarrow D^0 \rightarrow \mu$

DREENA-B $b \rightarrow B^0 \rightarrow \mu$

- There is substantial suppression of muons from both charm- and bottom-hadron decays for the $p_{\rm T}$ range covered
- ALICE and ATLAS measurments shows good agreement
- Model calculations agree qualitatively with both v_2 and $R_{\rm AA}$ for both charm and bottom muons
- The mass ordering at low p_T follows expectations?
 ⇒ charm quarks lose more energy than beauty quarks in the QGP since m_b > m_c (dead cone effect)

5 10 15 20 25 30 $p_{_{
m T}}$ [GeV]

**ALICE, arxiv:2211.13985

**ATLAS, Phys.Lett.B 829 (2022) 137077

**DAB-MOD, Phys. Rev. C 96 (2017) 064903

**DREENA-B, Phys. Lett. B 791 (2019) 236–241

ALT-PUB-529657

ALICE, JHEP 12 (2022) 126

- Models reproduce the $R_{\rm AA}^{\rm non-prompt}/R_{\rm AA}^{\rm prompt}$ and show a similar trend at low $p_{\rm T}$
 - including elastic collisions only (TAMU)
 - including both radiative and collisional processes (Langevintransport with Gluon Radiation (LGR), MC@sHQ+EPOS2)
- For $p_T > 5$ GeV/c, the ratio is larger than unity \Rightarrow larger suppression of prompt D⁰

ALI-PUB-534213

TAMU: Phys. Lett. B 735 (2014) 445–450 LGR: EPJC 80 (2020) 671, EPJC 80 (2020) 1113 MC@sHQ+EPOS2: Phys. Rev. C 89 (2014) 014905 CUJET3: Chin. Phys. C 43 (2019) 04410

ALICE, JHEP 12 (2022) 126

- Models reproduce the $R_{\rm AA}^{\rm non-prompt}/R_{\rm AA}^{\rm prompt}$ and show a similar trend at low $p_{\rm T}$
 - including elastic collisions only (TAMU)
 - including both radiative and collisional processes (Langevintransport with Gluon Radiation (LGR), MC@sHQ+EPOS2)
- For $p_T > 5$ GeV/c, the ratio is larger than unity \Rightarrow larger suppression of prompt D⁰
- Coalescence can also explain the minimum: prompt D⁰
 acquire a higher momentum than the parent charm
 quark
 - \Rightarrow hardening of the p_T spectra

TAMU: Phys. Lett. B 735 (2014) 445–450 LGR: EPJC 80 (2020) 671, EPJC 80 (2020) 1113 MC@sHQ+EPOS2: Phys. Rev. C 89 (2014) 014905 CUJET3: Chin. Phys. C 43 (2019) 04410

ALICE, JHEP 12 (2022) 126

- Models reproduce the $R_{\rm AA}^{\rm non-prompt}/R_{\rm AA}^{\rm prompt}$ and show a similar trend at low $p_{\rm T}$
 - including elastic collisions only (TAMU)
 - including both radiative and collisional processes (Langevintransport with Gluon Radiation (LGR), MC@sHQ+EPOS2)
- For p_T > 5 GeV/c, the ratio is larger than unity
 ⇒ larger suppression of prompt D⁰
- Coalescence can also explain the minimum: prompt D⁰ acquire a higher momentum than the parent charm quark
 - \Rightarrow hardening of the p_T spectra

The energy loss in medium is dependent on the mass
 ⇒ Non-prompt to prompt D⁰ Ratio > 1

ALI-PUB-534213

TAMU: Phys. Lett. B 735 (2014) 445–450 LGR: EPJC 80 (2020) 671, EPJC 80 (2020) 1113 MC@sHQ+EPOS2: Phys. Rev. C 89 (2014) 014905 CUJET3: Chin. Phys. C 43 (2019) 04410

• The v_2 of non-prompt D⁰ is significantly lower prompt D⁰ v_2 at low p_T

- This difference becomes more pronounced in peripheral collisions where v_2 is large
- Flow is shifted to higher p_T with increasing mass
 ⇒ incomplete thermalization of b quark?

CMS Source Control Decision Control Deci

- The v_2 of non-prompt D^0 is significantly lower prompt D^0 v_2
- This difference becomes more pronounced in peripheral collisions where v_2 is large
- Flow is shifted to higher p_T with increasing mass
 ⇒ incomplete thermalization of b quark?

- Measurements also suggest an increase of v_2 towards peripheral collisions, similar to light hadrons
 - ⇒ further indication that flow is a consequence of initial space anisotropy

B_c^+ in the QGP

- B_c^+ is a unique charm-bottom state, sensitive to both energy loss (suppression) and recombination
- Moderate suppression at high p_T , hint of an enhancement at low p_T
- Less suppression than other heavy mesons (except for B_s⁺)
 ⇒ Recombination is an important component of B_c⁺ production

b-jets in QGP

- Jets from b are interesting because of the large mass of the b quark and the color charge is controlled as opposed to inclusive jets
- In central collisions the R_{AA} values for b-jets are higher than for inclusive jets

• Possible influence of b-jet fragmentation and/or mass effect on parton energy loss (expected to

be small at large p_T)

ATLAS. arXiv:2204.13530

LIDO: Phys. Rev. C 100, 064911 (2019)

Charm fragmentation fractions in pp

- Heavy-flavor charm mesons and baryons are used to evaluate the charm fragmentation functions
- A difference is observed in pp collisions with respect to e⁺e⁻ and ep collisions

Charm fragmentation fractions in pp

- Heavy-flavor charm mesons and baryons are used to evaluate the charm fragmentation functions
- A difference is observed in pp collisions with respect to e⁺e⁻ and ep collisions
- Increase in Λ_c^+ production accompanied by a concomitant decrease in D^0
 - ⇒ evidence that universality (i.e. collision-system independence) of parton-to-hadron fragmentation is not valid

Beauty fragmentation functions

Heavy-flavor beauty mesons and are used to evaluate the beauty fragmentation fractions ratio

CMS, arXiv:2212.02309

- The ratio f_d/f_u does not depend on p_T or rapidity
- The average is consistent with 1
 ⇒ expected from strong isospin symmetry.

Beauty fragmentation functions

• The ratio of B_s^0 to B^+ decreases as a function of p_T and the is flat for $p_T > 18$ GeV/c and shows no rapidity dependence

CMS, arXiv:2212.02309 LHCb, PRL 124 (2020) 122002

$$R_S = f_S/f_u \frac{BR(B_S^0 \rightarrow J/\psi\phi)BR(\phi \rightarrow K^+K^-)}{BR(B^+ \rightarrow J/\psi K^+)}$$
 is the efficiency corrected ratio used since available f_S and $BR(B_S^0 \rightarrow J/\psi\phi)$ measurements are correlated

• LHCb data at forward rapidity is compatible in the overlapping p_T range

Beauty fragmentation functions

- The B_s^0/B^+ cross section ratio increases with multiplicity of $p_T < 6$ GeV/c
- No significant dependence on multiplicity for $p_T > 6$ GeV/c, consistent with data from e⁺e⁻ collisions
 - \Rightarrow Expected with hadronisation via quark coalescence in high-multiplicity pp collisions at low p_T and via fragmentation in vacuum for high- p_T b quarks

Baryon to meson ratio

- The light- and heavy-flavour baryon-to-meson ratios, Λ/K_S^0 and Λ_c^+/D^0 , show a similar trend as a function of multiplicity.
- The peaks shifts towards higher p_T , with increasing multiplicity \Rightarrow potential common mechanism for light valence quark- and charm-baryon formation in hadronic collisions at LHC energies.

Baryon to meson ratio

- The light- and heavy-flavour baryon-to-meson ratios, Λ/K_S^0 and Λ_c^+/D^0 , show a similar (different?) trend as a function of multiplicity.
- The peaks shifts towards higher p_T , with increasing multiplicity \Rightarrow potential common mechanism for light valence quark- and charm-baryon formation in hadronic collisions at LHC energies?

Conclusion

- The ability to measure several observables ($R_{\rm AA}$, v_2 , production ratios...) provides a solid base for model comparison and improves our understanding of heavy quark interaction with the medium
- However more precise measurements and models are needed to differentiate between different scenarios :
 - The apparent collective motion in small systems can be explained by intial and final state effects
 - The role of fragmentation and hadronisation is still being studied, both in medium and in vacuum.
- Run 3 data will allow more precise measurments with smaller uncertainties. Stay tuned!

