

Muon g-2 Experiment and SM

Esra Barlas-Yucel on behalf of the Muon g-2 Collaboration

Lepton Photon 2023 Melbourne 20 July 2023

Magnetic Moment of Muon

$$\overrightarrow{\mu} = g_{\mu} \frac{e}{2m} \overrightarrow{s}$$

g: Proportionality constant between spin and magnetic moment

Anomalous Magnetic Moment of Muon

$$a_{\mu} = \frac{g_{\mu} - 2}{2}, \qquad \overrightarrow{\mu} = (1 + a_{\mu}) \frac{e}{m} \overrightarrow{s}$$

Shows how much g differs fractionally from 2!

Measuring this anomaly could tell us if there are new particles or even forces that contribute to $a_{\it u}$

Standard Model Contribution: Calculating the Anomaly

- QED and EW contributions are very well-known with small uncertainties
- Hadronic contribution error dominates the uncertainty budget
- HVP needs to be on the 0.5% precision to keep up with the experiment uncertainties
- HLBL precision demand is less thank HVP, only 10% would be good enough
- Refining the SM calculations means refining the HVP calculation
- Muon g-2 Theory Initiative was formed to determine SM value of a_{μ} . Produce a single consensus theoretical value which is comparable to the experimental value.

Standard Model Contribution: Calculating the Anomaly

Independent Strategies to Evaluate Hadronic Contributions

Dispersive + Data-driven

- HVP: Use dispersion relations and re-write the integrals in terms of hadronic cross sections
 - Many experiments have measured positron-electron cross sections for different channels over the needed energy range with a decent uncertainty
- HLbL: A new dispersive approach
 - Model Independent
 - Significantly more complicated than HVP

Lattice QCD

- Use the approximation of discrete spacetime (a), finite spatial volume (L), time extent (T) to quantify the QCD effects
- Integrals are evaluated numerically using MC methods
- Already used to calculate simple hadronic quantities with high precision
- Heavily depends on computation resources
- Allows for the SM theory-based evaluations

polarized muons in a magnetic field

polarized muons in a magnetic field

$$g \neq 2 \Rightarrow \overrightarrow{w}_a \cong a_\mu \frac{e}{m} \overrightarrow{B}$$

$$g > 2$$

$$momentum \Rightarrow spin$$

$$\overrightarrow{\omega}_c = -\frac{e}{\gamma m} \overrightarrow{B}$$
 , cyclotron frequency (freq. of charged particle under magnetic field)

polarized muons in a magnetic field

$$\overrightarrow{\omega}_c = -\frac{e}{\gamma m}\overrightarrow{B}$$
 , cyclotron frequency (freq. of charged particle under magnetic field)

$$\overrightarrow{\omega}_{\scriptscriptstyle S} = -\frac{e}{\gamma m} \overrightarrow{B} (1 + \gamma a_{\mu})$$
 , Larmor precession frequency(total spin precession freq.)

polarized muons in a magnetic field

$$g \neq 2 \Rightarrow \overrightarrow{w}_a \cong a_\mu \frac{e}{m} \overrightarrow{B}$$

$$g > 2$$

$$g > 2$$

$$g > 2$$

$$g > 2$$

$$\overrightarrow{\omega}_c = -\frac{e}{\gamma m} \overrightarrow{B}$$
 , cyclotron frequency (freq. of charged particle under magnetic field)

$$\overrightarrow{\omega}_{\scriptscriptstyle S} = -\frac{e}{\gamma m} \overrightarrow{B} (1 + \gamma a_{\mu})$$
 , Larmor precession frequency(total spin precession freq.)

$$\overrightarrow{\omega}_a\cong\overrightarrow{\omega}_s-\overrightarrow{\omega}_c$$
 , anomalous precession frequency
$$\overrightarrow{\omega}_a\cong a_\mu\frac{e}{m}\overrightarrow{B}$$

Measure them to extract anomaly

Muon g-2 Experiment

Storing the Muons: Inflector and Kickers

Inflector

- Super conducting magnet
- Cancels B field(1.45T) in the magnet gap and let the beam enter the storage ring without being deflected.
- They are at r=77mm outside central closed orbit

Storing the Muons: Inflector and Kickers

Magnetic Kickers

- Kick some more to direct the muons into ideal orbit.
- Use 10.8 mrad pulsed kicks (<149 ns)

Storing the Muons: Electrostatic Quadrupoles

- Electrostatic Quadrupoles
 - Electrostatic quadrupoles are used to focus the beam vertically while the storage ring field provides horizontal focusing
 - Cancels out leading order of electric field contribution running at magic momentum p = 3.094 GeV/c

Storing the Muons: Electrostatic Quadrupoles

Electrostatic Quadrupoles

- 4 sets of quads which cover 43% of the ring
- Electrostatic quadrupoles are used to focus the beam vertically while the storage ring field provides horizontal focusing
- Cancels out leading order of electric field contribution running at magic momentum p = 3.094 GeV/c

$$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right]$$
O if in plane
Term cancels at the magic momentum

Measuring ω_p : Monitoring and Measuring the Magnetic Field

Fixed probes:

- 378 probes located on vacuum chamber
- Measure the magnetic field while muons are inside the storage ring

Trolley(Motorized cart):

- 17 NMR probes
- Circles around the ring on periodically
- Measures the magnetic field in the storage region
- Used to calibrate FP measurements

Measuring ω_p : Monitoring and Measuring the Magnetic Field

azimuthally averaged field

To determine ω_p at all times:

- Map the magnetic field in the storage region with trolley runs every 3 days
- Use fixed probes to interpolate the field between trolley runs

$$a_{\mu} = \left(\frac{g_e}{2}\right) \left(\frac{\omega_a}{\langle \omega_p \rangle}\right) \left(\frac{\mu_p}{\mu_e}\right) \left(\frac{m_{\mu}}{m_e}\right)$$

$$\langle \omega_p \rangle \approx \omega_p \otimes \rho(r)$$

Detectors: Trackers for Reconstructing the Beam Profile

Trackers

- 2 straw-tracker stations
- 8 modules per station each with
 128 straws
- Reconstruct muon beam profile from positron trajectories

$$a_{\mu} = \left(\frac{g_e}{2}\right) \left(\frac{\omega_a}{\langle \omega_p \rangle}\right) \left(\frac{\mu_p}{\mu_e}\right) \left(\frac{m_{\mu}}{m_e}\right)$$

$$\langle \omega_p \rangle \approx \omega_p \otimes \rho(r)$$

Detectors: Calorimeters

Calorimeters

- 24 segmented PbF₂ crystal calorimeters stationed around the ring
- Detects energy and arrival time of e^+ decayed from muons: $\mu^+ \to e^+ \bar{\nu_\mu} \nu_e$

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$

$$a_{\mu} = \left(\frac{g_e}{2}\right) \left(\frac{\omega_a}{\langle \omega_p \rangle}\right) \left(\frac{\mu_p}{\mu_e}\right) \left(\frac{m_{\mu}}{m_e}\right)$$

FFT analysis of fit residuals

FFT analysis of fit residuals

Underling Physics

5 parameter fit function

$$N(t) = N_0 e^{-t/\tau} [1 + A cos(\omega_a t + \phi)]$$

FFT analysis of fit residuals

Underling Physics

5 parameter fit function

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$

Systematic Effects

Including CBO, lost muon, other beam dynamics related parameters improve the fit results

$$\begin{split} N_0 \, e^{-\frac{t}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_a \, t + \phi \cdot \phi_{BO}(t) \,) \, \cdot \, N_{\text{CBO}}(t) \cdot \, N_{\text{VW}}(t) \cdot \, N_y(t) \cdot \, N_{2\text{CBO}}(t) \cdot \, J(t) \right. \\ \left. A_{\text{BO}}(t) = 1 + A_A \cos(\omega_{\text{CBO}}(t) + \phi_A) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. \phi_{\text{BO}}(t) = 1 + A_\phi \cos(\omega_{\text{CBO}}(t) + \phi_\phi) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. N_{\text{CBO}}(t) = 1 + A_{\text{CBO}} \cos(\omega_{\text{CBO}}(t) + \phi_{\text{CBO}}) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. N_{\text{VCBO}}(t) = 1 + A_{2\text{CBO}} \cos(2\omega_{\text{CBO}}(t) + \phi_{2\text{CBO}}) e^{-\frac{t}{\tau_{\text{VW}}}} \right. \\ \left. N_{\text{VW}}(t) = 1 + A_{\text{VW}} \cos(\omega_{\text{VW}}(t) t + \phi_{\text{VW}}) e^{-\frac{t}{\tau_{\text{VW}}}} \right. \\ \left. N_y(t) = 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \right. \\ \left. J(t) = 1 - k_{LM} \int_{t_0}^t \Lambda(t) dt \right. \\ \left. \omega_{\text{CBO}}(t) = \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}} \right. \\ \left. \omega_y(t) = F \omega_{\text{CBO}(t)} \sqrt{2\omega_c/F} \omega_{\text{CBO}}(t) - 1 \right. \\ \left. \omega_{\text{VW}}(t) = \omega_c - 2\omega_y(t) \end{split}$$

FFT analysis of fit residuals

Underling Physics

5 parameter fit function

$$N(t) = N_0 e^{-t/\tau} [1 + A\cos(\omega_a t + \phi)]$$

Systematic Effects

Including CBO, lost muon, other beam dynamics related parameters improve the fit results

$$\begin{split} N_0 \, e^{-\frac{t}{\gamma \tau}} \left(1 + A \cdot A_{BO}(t) \cos(\omega_a \, t + \phi \cdot \phi_{BO}(t) \,) \, \cdot N_{\text{CBO}}(t) \cdot N_{\text{VW}}(t) \cdot N_y(t) \cdot N_{2\text{CBO}}(t) \cdot J(t) \right. \\ \left. A_{\text{BO}}(t) = 1 + A_A \cos(\omega_{\text{CBO}}(t) + \phi_A) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. \phi_{\text{BO}}(t) = 1 + A_{\phi} \cos(\omega_{\text{CBO}}(t) + \phi_{\phi}) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. N_{\text{CBO}}(t) = 1 + A_{\text{CBO}} \cos(\omega_{\text{CBO}}(t) + \phi_{\text{CBO}}) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. N_{\text{2CBO}}(t) = 1 + A_{2\text{CBO}} \cos(2\omega_{\text{CBO}}(t) + \phi_{2\text{CBO}}) e^{-\frac{t}{\tau_{\text{CBO}}}} \right. \\ \left. N_{\text{VW}}(t) = 1 + A_{\text{VW}} \cos(\omega_{\text{VW}}(t) t + \phi_{\text{VW}}) e^{-\frac{t}{\tau_{\text{VW}}}} \right. \\ \left. N_y(t) = 1 + A_y \cos(\omega_y(t) t + \phi_y) e^{-\frac{t}{\tau_y}} \right. \\ \left. J(t) = 1 - k_{LM} \int_{t_0}^t \Lambda(t) dt \right. \\ \left. \omega_{\text{CBO}}(t) = \omega_0 t + A e^{-\frac{t}{\tau_A}} + B e^{-\frac{t}{\tau_B}} \right. \\ \left. \omega_y(t) = F \omega_{\text{CBO}(t)} \sqrt{2\omega_c / F \omega_{\text{CBO}}(t) - 1} \right. \\ \left. \omega_{\text{VW}}(t) = \omega_c - 2\omega_y(t) \end{split}$$

Measuring the Muon Anomaly

First Measurement from Fermilab Muon g-2 Experiment

Fermilab Muon g-2 Experiment Result: Run-1 Analysis

- ✓FNAL determined anomaly with 460 ppb precision (statistical 434 ppb, systematics 159 ppb)
- ✓ Nothing was found that indicated contradiction with BNL results
- ✓Run-1 result represents only 5% of Fermilab Muon g-2 data
- √15% smaller error

Theory Initiative SM Calculation

- √2020 Muon g-2 Theory Initiative
- √Net uncertainty is 368 ppb
- ✓HLbL incorporates both data-driven and lattice calculations, HVP is contribution is coming from only datadriven method

- ✓FNAL determined anomaly with 460 ppb precision (statistical 434 ppb, systematics 159 ppb)
- ✓ Nothing was found that indicated contradiction with BNL results
- ✓Run-1 result represents only 5% of Fermilab Muon g-2 data
- √15% smaller error

Close look at the SM calculations

Lattice

Data-based Dispersive

Lattice and Data

Official WP20

The anomalous magnetic moment of the muon in the Standard Model

T. Aoyama^{1,2,3}, N. Asmussen⁴, M. Benayoun⁵, J. Bijnens⁶, T. Blum^{7,8}, M. Bruno⁹, I. Caprini¹⁰ C. M. Carloni Calame¹¹, M. Cè^{9,12,13}, G. Colangelo^{†14}, F. Curciarello^{15,16}, H. Czyż¹⁷, I. Danilkin¹², M. Davier^{†18} C. T. H. Davies¹⁹, M. Della Morte²⁰, S. I. Eidelman^{†21,22}, A. X. El-Khadra^{†23,24}, A. Gérardin²⁵, D. Giusti^{26,27}, M. Golterman²⁸, Steven Gottlieb²⁹, V. Gülpers³⁰, F. Hagelstein¹⁴, M. Hayakawa^{31,2}, G. Herdoíza³², D. W. Hertzog³³ A. Hoecker34, M. Hoferichter 14,35, B.-L. Hoid36, R. J. Hudspith 12,13, F. Ignatov21, T. Izubuchi 37,8, F. Jegerlehner L. Jin^{7,8}, A. Keshavarzi³⁹, T. Kinoshita^{40,41}, B. Kubis³⁶, A. Kupich²¹, A. Kupść^{42,43}, L. Laub¹⁴, C. Lehner^{†26,37} L. Lellouch²⁵, I. Logashenko²¹, B. Malaescu⁵, K. Maltman^{44,45}, M. K. Marinković^{46,47}, P. Masjuan^{48,49} A. S. Meyer³⁷, H. B. Meyer^{12,13}, T. Mibe^{†1}, K. Miura^{12,13,3}, S. E. Müller⁵⁰, M. Nio^{2,51}, D. Nomura^{52,53}, A. Nyffeler^{†12}, V. Pascalutsa¹², M. Passera⁵⁴, E. Perez del Rio⁵⁵, S. Peris^{48,49}, A. Portelli³⁰, M. Procura⁵⁶ C. F. Redmer¹², B. L. Roberts^{†57}, P. Sánchez-Puertas⁴⁹, S. Serednyakov²¹, B. Shwartz²¹, S. Simula²⁷ D. Stöckinger⁵⁸, H. Stöckinger-Kim⁵⁸, P. Stoffer⁵⁹, T. Teubner^{‡60}, R. Van de Water²⁴, M. Vanderhaeghen^{12,13} G. Venanzoni⁶¹, G. von Hippel¹², H. Wittig^{12,13}, Z. Zhang¹⁸ M. N. Achasov²¹, A. Bashir⁶², N. Cardoso⁴⁷, B. Chakraborty⁶³, E.-H. Chao¹², J. Charles²⁵, A. Crivellin^{64,62} O. Deineka¹², A. Denig^{12,13}, C. DeTar⁶⁶, C. A. Dominguez⁶⁷, A. E. Dorokhov⁶⁸, V. P. Druzhinin²¹, G. Eichmann^{69,47}, M. Fael⁷⁰, C. S. Fischer⁷¹, E. Gámiz⁷², Z. Gelzer²³, J. R. Green⁹, S. Guellati-Khelifa⁷³, D. Hatton¹⁹, N. Hermansson-Truedsson¹⁴, S. Holz³⁶, B. Hörz⁷⁴, M. Knecht²⁵, J. Koponen¹, A. S. Kronfeld²⁴, J. Laiho⁷⁵ S. Leupold⁴², P. B. Mackenzie²⁴, W. J. Marciano³⁷, C. McNeile⁷⁶, D. Mohler^{12,13}, J. Monnard¹⁴, E. T. Neil⁷⁷ A. V. Nesterenko⁶⁸, K. Ottnad¹², V. Pauk¹², A. E. Radzhabov⁷⁸, E. de Rafael²⁵, K. Raya⁷⁹, A. Risch¹².

A. Rodríguez-Sánchez⁶, P. Roig⁸⁰, T. San José^{12,13}, E. P. Solodov²¹, R. Sugar⁸¹, K. Yu. Todyshev²¹, A. Vainshtein⁸²
A. Vaquero Avilés-Casco⁶⁶, E. Weil⁷¹, J. Wilhelm¹², R. Williams⁷¹, A. S. Zhevlakov⁷⁸

- Theory Initiative HVP contribution
 - Two independent data-driven compilations
 - 6 independent LQCD calculations with HVP average at 2.6% total uncertainty
 - BMW20 is the first LQCD calculation with sub-percent error (in 2021)

March 2023 P5 talk from A. El-Khadra

Close look at the SM calculations

- BMW20 reduced the tension with experimental average to 1.5 σ
- BMW20 is also in tension with data-based dispersive result(2.1 σ)
- Needs to be confirmed by other lattice QCD groups
- Will be interested to see how it evolves in future but lattice QCD calculations requires a
 huge amount of computing resource. All groups are working on defining intermediate
 results (simpler way to compare things)

March 2023 P5 talk from A. El-Khadra

- Measurement of $e^+e^- \to \pi^+\pi^-$ cross section contributes to HVP
- Tension with previous measurements (>3 to 5 σ)
- Close to the experimental measurement
- A panel with muon g-2 collaboration showed no obvious problem
- There is no simple answer! Big puzzle to be resolved
- Electron-positron collider community is investigating the reason
- New results to come from BaBar, KLOE, SND, BesIII, Belle II

Improvements on the Experiment

Improvements on the Muon g-2 Experiment Uncertainty: Analysis Methods(after Run-1)

24

Improved Kick(during Run-3)

300

 Improved kick: Most recent part of Run-3 had a perfectly centered beam owing to improved kicker system.

200

Reduced CBO amplitude

100

• Centered muons means less C_e uncertainty

Improvements on the Muon g-2 Experiment Uncertainty: Quad-RF System (during Run-5/6)

Apply RF dipole or quadrupole electric field; (by kicking the beam out of phase with CBO)

- Reduce CBO Amplitude which is caused by an imperfect kicker system (factor of 5 reduction)
- Reduce muon loss by scraping the beam (factor of 4 reduction)

Fixed the damaged resistors (after Run-1)

- 3 of the quad resistors got damaged towards the end of Run-1 which caused:
 - A time dependent phase
 - Unstable beam motion (beam mean and width)
- Convolution between beam motion and initial phase of the beam generated an early-to-late effect on ω_a
- PA was second largest uncertainty in Run-1 result
- Phase Acceptance is going to be **greatly** reduced for Run-2/3 and beyond

Temperature Control (after Run-1)

- Magnet insulation was improved
- Temperature control was improved
 - Better field stability
 - Fewer muon loss
 - Better detector stability

With Insulation: 10/12

day 03

Field Systematics (after Run-1)

Time [ms]

Muon g-2 Experiment Status

Run-5 Run-1 10 Run-1 Run-2 01-May 13 Run-1 Run-2 01-May 13 Run-1 Run-2 01-May 13 Run-1 Run-2 01-May 13 Run-1 Run-2 01-Apri 27 01-Apri 2

Muon g-2 at Fermilab

- Run-6 has ended in July 2023 (Final year)
- Hit the TDR Goal of 21 X BNL data
- Run-2/3 analysis is wrapping up
 - 4.5 times the statistics of Run-1
 - Expect statistical error ~ 2 times improvement
 - Expect systematic error ~ 1.5 times improvement
- Run-4/5/6 analysis has launched

- A new different approach to measure muon g-2 at J-PARC
- Low emittance muon beam
- No strong focusing, E=0
- Positron tracking detector (silicon strip sensors)
- Electric field will be eliminated by using reaccelerated thermal muon beam
- muon beam • Lower momentum muon beam + compact storage region with $^{\mu^+(4_{MeV})}$ Cooling $_{\mu^+(2_{5_{MeV}})}$ highly uniform magnetic field
- Tracking detector for decay positrons —> reduced pile-up + able to measure the momentum direction of positrons.
- Expects to start late 2020s

Timeline for Muon g-2

Outlook and Summary

- *FNAL Muon g-2 experiment will publish second batch of data (Run-2/3) with twice as precise of previous result **soon**. Third and last batch of dataset is expected to be published in 2025
 - FNAL Muon g-2 experiment has reached the statistical TDR goal
 - Run-2/3 will have reduced systematic uncertainties thanks to many hardware and software improvements
 - Experiment goal is to eventually reach to 140 ppb precision
- *Lattice Gauge Theory Community is working around the clock to confirm the lattice prediction with other groups/techniques
 - More computational resource in future
 - Better methods and algorithms
- *Theory Initiative is working on figuring out the differences between LQCD and data-driven methods. Final average number will finally match FNAL precision goal. Next update in September 2023!
 - Lattice HVP by 2025-> 0.5% (if no tension)
 - Dispersive+lattice LbL by 2025 -> 10%
- $*e^-e^+$ collider community working to understand the difference of CMD-3 results from previous experiments.
 - Might have a chance of repeating the measurements with larger datasets.
 - New results to come from BaBar, KLOE, SND, BesIII, Belle II (reduced uncertainty).
 - Data-driven HVP by 2025 -> 0.3% (if no tension)
- ■2025 is expected to be the year to resolve many puzzles...

Thanks!

Backup Slides

Systematics from Run-1

$$a_{\mu} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_k + B_q\right)}$$

 $f_{\rm clock}$ •Blinded clock

 ω_a^m •Measured precession frequency

 C_e •Electric field correction

 C_p •Pitch correction

 C_{ml} •Muon loss correction

 C_{pa} •Phase-acceptance correction

Absolute magnetic field calibration

 $\omega_p'(x,y,\phi)$ •Field tracking multipole distribution

 $M(x,y,\phi)$ •Muon weighted multipole distributed

 B_k •Transient field from the eddy current in kicker

Bq •Transient field from the quad charging

Phase acceptance and transient field corrections are the largest systematics!

 f_{calib}

Run-1 Systematics

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Quantity	Correction Terms	Uncertainty	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		(ppb)	(ppb)	Dominated by statistical
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ω_a (statistical)	_	434	Dominated by Statistical
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$,	_	56	uncertainty
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_e	489	53	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_p	180	13	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	C_{ml}	-11	5	
B_k -27 37 PA and Field $\mu'_p(34.7^\circ)/\mu_e$ $-$ 10 Transients m_μ/m_e $-$ 22 $g_e/2$ $-$ 0 Total systematic $-$ 157 *Nearly half of BNL Total fundamental factors $-$ 25 *Will be even better	C_{pa}	-158	75	Systematics
B_k -27 37 92 PA and Field $\mu_p'(34.7^\circ)/\mu_e$ $-$ 10 Transients m_μ/m_e $-$ 22 $g_e/2$ $-$ 0 *Nearly half of BNL Total fundamental factors $-$ 25 *Will be even better	$f_{\rm calib}\langle\omega_p'(x,y,\phi)\times M(x,y,\phi)\rangle$	_		dominated by
$\mu_p'(34.7^\circ)/\mu_e$ — 10 Transients m_μ/m_e — 22 $g_e/2$ — 0 *Nearly half of BNL Total fundamental factors — 25 *Will be even better	$B_{m k}$	-27	37	, and the second
m_{μ}/m_{e} - 22 $g_{e}/2$ - 0 Total systematic - 157 Total fundamental factors - 25 *Will be even better	B_{q}	-17	92	PA and Field
m_{μ}/m_e — 22 $g_e/2$ — 0 Total systematic — 157 — *Nearly half of BNL Total fundamental factors — 25 *Will be even better	$\mu_p'(34.7^{\circ})/\mu_e$	_	10	Transients
Total systematic − 157 ← *Nearly half of BNL Total fundamental factors − 25 *Will be even better	1 1	_	22	
Total systematic − 157 ← *Nearly half of BNL Total fundamental factors − 25 *Will be even better	$g_e/2$	_	0	
"Will be even better		_	157	*Nearly half of BNL
Totals 544 462 Will be even belief	Total fundamental factors	_	25	•
100015	Totals	544	462	vviii be everi better for

Estimation for future dataset uncertainties

Most promising models to explain the discrepancy

- Muon g-2 can indicate if there is a CP-conserving, lepton-flour conserving or BSM chirality-flipping interaction but can't tell which one is the most promising.
- Possible explanations:
 - SUSY models (while evading LHC limits)
 - Leptoquark models (if leptoquark masses are above all LHC limits)
 - 2-Higgs doublet models

Establishing a g-2 discrepancy from SM would place a strict limit on BSM scenarios

Steering Committee

- Gilberto Colangelo (Bern)
- Michel Davier (Orsay) co-chair
- Aida El-Khadra (UIUC & Fermilab) chair
- Martin Hoferichter (Bern)
- Christoph Lehner (Regensburg University & BNL) co-chair
- Laurent Lellouch (Marseille)
- Tsutomu Mibe (KEK)
 J-PARC Muon g-2/EDM experiment
- Lee Roberts (Boston)Fermilab Muon g-2 experiment
- Thomas Teubner (Liverpool)
- Hartmut Wittig (Mainz)

https://muon-gm2-theory.illinois.edu

- Maximize the impact of the Fermilab and J-PARC experiments
 quantify and reduce the theoretical uncertainties on the hadronic corrections
- summarize the theory status and assess reliability of uncertainty estimates
- organize workshops to bring the different communities together:
 First plenary workshop @ Fermilab: 3-6 June 2017

HVP workshop @ KEK: 12-14 February 2018

HLbL workshop @ U Connecticut: 12-14 March 2018

Second plenary workshop @ HIM (Mainz): 18-22 June 2018

Third plenary workshop @ INT (Seattle): 9-13 September 2019

Lattice HVP at high precision workshop (virtual): 16-20 November 2020

Fourth plenary workshop @ KEK (virtual): 28 June - 02 July 2021 Fifth plenary workshop @ Higgs Centre (Edinburgh): 5-9 September 2022

- 2nd White Paper: First discussions @ KEK meeting in June 2021 expect to develop a concrete plan @ Higgs Centre workshop

Snowmass CSS, 17-26 July 2022

Storing the Muons: Magnet

Achieved 25 ppm on field uniformity

Superconducting C shaped magnet Provides 1.45T B field(vertical and uniform)

- 12 Yokes: Open on the inside, allows the decay positrons to reach to the detectors.
- 72 poles:Low-carbon steel to minimize the impurity
- **144 Edge shims:** Minimize the local sextupole field by changing edge shim thickness
- 864 Steel wedges: Angle adjustment (compensate quadrupole component), radial adjustment (shim local dipole field).
- Surface correction coil: Reduces nonuniformities on higher moment of field.

Muon g-2 at J-PARC

Acceleratio

- J-PARC uses a different method
- They have low emittance muon beam
- No strong focusing, E=0
- Positron tracking detector (silicon strip sensors)
- Electric field will be eliminated by using reaccelerated thermal muon beam
- Lower momentum muon beam + compact storage region with highly uniform magnetic field
- Tracking detector for decay positrons —> reduced pile-up +
 able to measure the momentum direction of positrons.
- Final Goal is to reach **0.46ppm—> 0.1ppm** on a_{μ}
- Beam line construction has started and commissioning is expected to start in 2027

Comparison of Experiment Parameters

Storage

0.35m

Table 1. Comparison of BNL-E821, FNAL-E989, and our experiment.

μ+ (210 MeV)

	BNL-E821	Fermilab-E989	Our experiment	J-PARC E34
Muon momentum	3.09 Ge	eV/c	$300~{ m MeV}/c$	
Polarization motio	s of cyclotron n: 7.1 m	6	50%	Radius of cyclotron motion: 333 mm
Storage field Focusing field	B = 1.4 Electric qua	drupole	B = 3.0 T Very weak magne	tic
Cyclotron period Spin precession period	149 r 4.37 <i>j</i>		7.4 ns 2.11 μ s	
Number of detected e^+ Number of detected e^-	5.0×10^9 3.6×10^9	1.6×10 ¹¹	5.7×10^{11}	
a_{μ} precision (stat.) (syst.)	460 ppb 280 ppb	100 ppb 100 ppb	450 ppb <70 ppb	
EDM precision (stat.) (syst.)	$0.2 \times 10^{-19} e \cdot \text{cm}$ $0.9 \times 10^{-19} e \cdot \text{cm}$	- -	$1.5 \times 10^{-21} e \cdot c$ $0.36 \times 10^{-21} e \cdot c$	

PTEP 2019 (2019), 053C02

Positron

detector

NMR Probes $\frac{a_{\mu}}{\text{Calib }} \propto \underbrace{\frac{f_{\text{clock}} \ \omega_a^m \ (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}} \ \langle \omega_p'(x,y,\phi) \times M(x,y,\phi) \rangle (1 + B_k + B_q)}$

Absolute field calibration:

- Absolute probes were used to calibrate NMR probes
- Proton NMR, calibrated in terms of $\omega_p(T_r)$ of a proton shielded in a spherical sample of water at an exact temperature.

Kicker Transients

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + \frac{C_{pa}}{D_q}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + \frac{C_{pa}}{B_k}\right)}$$

Kickers pulsing created influence on the average field seen by beam

Field Perturbation

Used a magnetometer to measure the transient

Beam Dynamics

CBO - Coherent Beam Oscillation

Radial CBO movement

 λ_x - radial wavelength

 λ_C - cyclotron wavelength

Frequency from detector point of view = $f_c - f_x$

$$x = x_e + A_x cos(f_x t + \delta_x)$$
 $y = A_y cos(f_y t + \delta_y)$
Simple Harmonic Motion

Beam Dynamics

CBO - Coherent Beam Oscillation

Radial CBO movement

 λ_x - radial wavelength

 λ_C - cyclotron wavelength

Frequency from detector point of view = $f_c - f_x$

$$x = x_e + A_x cos(f_x t + \delta_x)$$
 $y = A_y cos(f_y t + \delta_y)$
Simple Harmonic Motion

Phase Acceptance

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + C_{pa}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_k + B_q\right)}$$

When there is a time dependent phase, It shifts the ω_a !

Due to damaged HV resistors; stored beam distribution was unstable.

ESQ Transients

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml} + \frac{C_{pa}}{F_{\text{calib}}}\right)}{f_{\text{calib}} \left\langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \right\rangle \left(1 + B_k + \frac{B_q}{F_{q}}\right)}$$

Quads charging and discharging cause mechanical vibration

Field Perturbation

Measure the field with special NMR probes and map the effect!

E-field and Pitch Correction

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e\right) \left(C_p\right) + C_{ml} + C_{pa}}{f_{\text{calib}} \ \langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle \ \left(1 + B_k + B_q\right)}$$

Not all of the muons are at magic momentum! There is a 0.5% momentum acceptance

$$\vec{\omega}_{a} = \frac{e}{m} \left[a_{\mu} \vec{B} - a_{\mu} \frac{\gamma}{\gamma + 1} (\vec{\beta} \cdot \vec{B}) \vec{\beta} - \left(a_{\mu} - \frac{1}{\gamma^{2} - 1} \right) \vec{\beta} \times \vec{E} \right]$$

Vertical betatron oscillations cause non-zero average value for $\overrightarrow{\beta}$. \overrightarrow{B}

Pileup

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}}(\omega_a^m) (1 + C_e + C_p + C_{ml} + C_{pa})}{f_{\text{calib}} \langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle (1 + B_k + B_q)}$$

- Pileup is one of the systematics that modulated precession frequency.
- When more than two positrons hit the detector at the same time and place, they could be treated as a single pulse.
- That distorts the time and energy spectrum!

Run-1 data set	1a	1b	1c	
Gain changes (ppb)	12	Q	Q	
Pileup (ppb)	39	42	35	31
CBO (ppb)	42	49	32	35
Time randomization (ppb)	15	12	9	7
Early-to-late effect (ppb)	21	21	22	10
total systematic uncertainty (ppb)	64	70	54	49

$$\frac{a_{\mu}}{f_{\text{calib}}} \propto \frac{f_{\text{clock}} \ \omega_a^m \left(1 + C_e + C_p + C_{ml}\right) + C_{pa}}{f_{\text{calib}} \ \langle \omega_p'(x, y, \phi) \times M(x, y, \phi) \rangle \ (1 + B_k + B_q)}$$

- Muons that were scattered from different materials before decaying and then punch through multiple calorimeters.
- They have different phase than stored muons so they modulate ω_a , producing a systematic error.
- We need to identify them in the data!

